

UNIVERSIDAD AGRARIA DEL ECUADOR

FACULTAD DE CIENCIAS AGRARIAS "DR. JACOBO BUCARAM ORTIZ" CARRERA DE INGENIERÍA AMBIENTAL

TRABAJO DE TITULACIÓN COMO REQUISITO PREVIO PARA LA OBTENCIÓN DEL TÍTULO DE INGENIERA AMBIENTAL

IDENTIFICACIÓN DE ZONAS CON PROBABILIDAD DE CONTAMINACIÓN AMBIENTAL POR POZOS PETROLEROS UTILIZANDO EL MODELO MAXENT-ANCÓN, SANTA ELENA

AUTORA

SANDOYA REYES YULIANA ALEXANDRA

TUTOR
ING. HERNÁNDEZ PAREDES TOMÁS EDINSON

GUAYAQUIL, ECUADOR 2025

UNIVERSIDAD AGRARIA DEL ECUADOR FACULTAD DE CIENCIAS AGRARIAS

"DR. JACOBO BUCARAM ORTIZ"

CARRERA DE INGENIERÍA AMBIENTAL

APROBACIÓN DEL TUTOR

Yo, HERNÁNDEZ PAREDES TOMÁS EDINSON, docente de la Universidad Agraria del Ecuador, en mi calidad de Tutor, certifico que el presente trabajo de titulación: IDENTIFICACIÓN DE ZONAS CON PROBABILIDAD DE CONTAMINACIÓN AMBIENTAL POR POZOS PETROLEROS UTILIZANDO EL MODELO MAXENT-ANCÓN, SANTA ELENA, realizado por la estudiante SANDOYA REYES YULIANA ALEXANDRA; con cédula de identidad N° 0932523244 de la carrera INGENIERÍA AMBIENTAL, sede matriz "Dr. Jacobo Bucaram Ortiz"- GUAYAQUIL, ha sido orientado y revisado durante su ejecución; y cumple con los requisitos técnicos y legales exigidos por la Universidad Agraria del Ecuador; por lo tanto, se aprueba la presentación del mismo.

Atentamente,	
Ing. Hernández	Paredes Tomás Edinson, Mgtr

UNIVERSIDAD AGRARIA DEL ECUADOR FACULTAD DE CIENCIAS AGRARIAS "DR. JACOBO BUCARAM ORTIZ" CARRERA DE INGENIERÍA AMBIENTAL

APROBACIÓN DEL TRIBUNAL DE SUSTENTACIÓN

Los abajo firmantes, docentes designados por el H. Consejo Directivo como miembros del Tribunal de Sustentación, aprobamos la defensa del trabajo de titulación: "IDENTIFICACIÓN DE ZONAS CON PROBABILIDAD DE CONTAMINACIÓN AMBIENTAL POR POZOS PETROLEROS UTILIZANDO EL MODELO MAXENT-ANCÓN, SANTA ELENA", realizado por la estudiante SANDOYA REYES YULIANA ALEXANDRA, el mismo que cumple con los requisitos exigidos por la Universidad Agraria del Ecuador.

Atentamente,	
	RANO ZAVALA LEILA ESIDENTE
BLGO. RAÚL ARIZAGA GAMBOA EXAMINADOR PRINCIPAL	ING. FACUY DELGADO JUSSEN EXAMINADOR PRINCIPAL
ING ARCOS	IÁCOME DIEGO. Ms C

EXAMINADOR SUPLENTE

Guayaquil, 11 de abril del 2025

DEDICATORIA

A Dios, quien hace todas las cosas y me puso en este camino, a Él, que es mi fuerza y quien me da sabiduría, por sostenerme fielmente cada día. Todo lo que he hecho, logrado y soy, es por medio de Él y para Él. A mis padres, por su amor, cariño y apoyo incondicional, por ser mi impulso y el latido de mi corazón, con cariño esto es suyo. A mi abuelita, que, aunque ya no está sé que le haría feliz verme aquí. A mi pequeña hermanita, mi compañera y amiga más leal, por motivarme, escucharme y abrazarme cuando he sentido no poder más. A mis amigos, por caminar junto a mí, les entrego este logro con todo mi cariño. Este éxito les pertenece tanto como a mí.

AGRADECIMIENTO

A Dios, por rodearme de Su bondad y amor, por ponerme en este camino, por poner esta pasión y amor por lo que hago y haré. A mis padres, que más que eso, mis amigos y cómplices en todo, por su ánimo, sacrificio y su sola presencia en mi vida, me hace más que feliz. Mi gratitud por enseñarme a no rendirme, superar obstáculos y luchar por lo que quiero. A mis amigos, por estar para mí, por las risas y los buenos momentos, gracias por hacer que la vida sea más bonita. Mi especial gratitud a mi tutor, ing. Tomás Hernández, por su guía y paciencia durante el desarrollo de este trabajo, por motivarme a creer en mí. Al ing. Diego Portalanza, por su apoyo en este trabajo, por recordarme que siempre hay una solución, siempre. A mis tutores, por enseñarme no sólo a mejorar profesionalmente, sino a ser mejor persona también. A mis docentes de la carrera, por cada enseñanza, por los conocimientos impartidos y por dejar esa huella en mi crecimiento académico y profesional, lo atesoro todo.

Autorización de Autoría Intelectual

Yo, Yuliana Alexandra Sandoya Reyes, en calidad de autor(a) del proyecto

realizado, sobre "IDENTIFICACIÓN DE ZONAS CON PROBABILIDAD DE

CONTAMINACIÓN AMBIENTAL POR POZOS PETROLEROS UTILIZANDO EL

MODELO MAXENT-ANCÓN, SANTA ELENA" para optar el título de INGENIERO

AMBIENTAL, por la presente autorizo a la UNIVERSIDAD AGRARIA DEL

ECUADOR, hacer uso de todos los contenidos que me pertenecen o parte de los

que contienen esta obra, con fines estrictamente académicos o de investigación.

Los derechos que como autor(a) me correspondan, con excepción de la presente

autorización, seguirán vigentes a mi favor, de conformidad con lo establecido en los

artículos 5, 6, 8; 19 y demás pertinentes de la Ley de Propiedad Intelectual y su

Reglamento.

Guayaquil, 30 de abril de 2025

SANDOYA REYES YULIANA ALEXANDRA

C.I. 0932523244

RESUMEN

El presente estudio identifica las zonas con probabilidad de contaminación ambiental por pozos petroleros utilizando el modelo MaxEnt en la parroquia San José de Ancón, provincia de Santa Elena. El objetivo de investigación fue aplicar el máxima entropía para la elaboración de un probabilidad de contaminación derivada de la actividad petrolera con el fin de implementar estrategias de gestión en las zonas vulnerables. El área de estudio se encuentra expuesta a efectos derivados por las actividades petrolíferas, de este modo, es necesario considerar el impacto ambiental generado, que afecta el ecosistema y las comunidades locales. El estudio se basa en MaxEnt, aplicado para estimar la vulnerabilidad ambiental. La metodología comprende la recopilación de de los pozos petroleros, 19 variables bioclimáticas socioeconómicas. Los resultados exponen un rendimiento eficiente del modelo con un AUC de 0.947, donde la precipitación anual se posiciona como la variable de mayor representatividad cuando se emplea individualmente. Sin embargo, al utilizar las variables de manera conjunta, la precipitación del mes más seco representa la mayor aportación, con el 37%. Las áreas de mayor vulnerabilidad se sitúan en la zona oeste de la parroquia, donde residen comunidades como "La Prosperidad" y fluyen ríos como "Las Vegas" y "El Tambo" expuestos a la contaminación. Se propone un plan de respuesta que abarca estrategias de gestión, además, se enfatiza la necesidad de participación comunitaria para fortalecer el compromiso local en la protección de los recursos naturales, aportando al bienestar de las comunidades afectadas.

Palabras clave: Contaminación ambiental, gestión, MaxEnt, vulnerabilidad.

ABSTRACT

This study identifies areas with a probability of environmental contamination from oil wells using the MaxEnt model in the San José de Ancón parish, Santa Elena province. The research objective was to apply the maximum entropy model to develop a probability map of contamination derived from oil activities, aiming to implement management strategies in vulnerable areas.

The study area is exposed to the effects of oil-related activities, making it necessary to consider the environmental impact generated, which affects the ecosystem and local communities. The study relies on the MaxEnt model, applied to estimate environmental vulnerability. The methodology involves collecting oil well coordinates and analyzing 19 bioclimatic and socioeconomic variables.

The results demonstrate an efficient model performance with an AUC of 0.947, where annual precipitation stands out as the most representative variable when used individually. However, when the variables are used collectively, the precipitation of the driest month accounts for the highest contribution, with 37%.

The areas of greatest vulnerability are located in the western part of the parish, where communities such as "La Prosperidad" and rivers like "Las Vegas" and "El Tambo" are exposed to contamination. A response plan is proposed, including management strategies, while emphasizing the importance of community participation to strengthen local commitment to the protection of natural resources, thereby contributing to the well-being of affected communities.

Keywords: Vulnerability, environmental contamination, MaxEnt, management.

ÍNDICE GENERAL

1. INTRODUCCIÓN	. 15
1.1 Antecedentes del problema	. 15
1.2 Planteamiento y formulación del problema	. 16
1.2.1 Planteamiento del problema	. 16
1.2.2 Formulación del problema	. 17
1.3 Justificación de la investigación	. 18
1.4 Delimitación de la investigación	. 20
1.5 Objetivo general	. 20
1.6 Objetivos específicos	. 20
1.7 Hipótesis o idea a defender	. 20
2. MARCO TEÓRICO	. 21
2.1 Estado del arte	. 21
2.2 Bases científicas y teóricas de la temática	. 24
2.2.1 San José de Ancón	. 24
2.2.2.1. Usos de suelo actual	. 24
2.2.2.2. Actividad hidrocarburífera	. 25
2.2.2 Contaminación ambiental	. 25
2.2.3 Industria petrolera	. 26
2.2.4 Pozo Petrolero	
2.2.5 Derrames de petróleo	. 27
2.2.5.1. Causas de los derrames de petróleo	. 27
2.2.5.2. Efectos de las actividades petrolíferas	. 27
2.2.6 Sistemas de Información Geográfica (SIG)	. 28
2.2.6.1. Sistema de Posicionamiento Global (GPS)	. 28
2.2.7 Modelo de Máxima Entropía	. 28
2.2.7.1. MaxEnt	. 29
2.2.8. Tipos de medidas ambientales	. 30
2.2.8.1. Medidas preventivas	. 30
2.2.8.2. Medidas de contención	. 30
2.2.8.3. Medidas de limpieza	. 30
2.3. Marco Legal	. 31
CONSTITUCIÓN DE LA REPÚBLICA DEL ECUADOR (2008)	. 31

CONVENIO INTERNACIONAL SOBRE COOPERACIÓN, PREPARAC	NÓK
Y LUCHA CONTRA LA CONTAMINACIÓN POR HIDROCARBUI	ROS
(1995)	33
LEY DE HIDROCARBUROS (2023)	
CÓDIGO ORGÁNICO DEL AMBIENTE (2017)	34
REGLAMENTO AMBIENTAL DE ACTIVIDADES HIDROCARBURÍFE	RAS
(2021)	35
LA AGENDA 2030 Y LOS OBJETIVOS DE DESARROLLO SOSTENI	
(2015)	36
3. MATERIALES Y MÉTODOS	
3.1 Enfoque de la investigación	38
3.1.1 Tipo y alcance de la investigación	
3.1.2 Diseño de investigación	
3.2 Metodología	
3.2.1 Variables	39
3.2.1.1. Variable independiente	39
3.2.1.2. Variable dependiente	40
3.2.2 Matriz de operacionalización de variables	
3.2.3 Recolección de datos	41
3.2.3.1. Recursos	41
3.2.3.2. Métodos y técnicas	41
3.2.4. Población y muestra	44
3.2.4.1. Población	44
3.2.5. Análisis estadístico	44
3.2.5.1. Prueba de jackniffe	44
3.2.5.2. Curvas AUC	45
4. RESULTADOS	46
4.1 Obtención de las coordenadas geográficas de los pozos petroleros en el	área
de estudio mediante búsqueda bibliográfica	46
4.2 Aplicación del modelo de máxima entropía para la elaboración de un map	a de
probabilidad de contaminación derivada de la actividad de los pozos petroleros	s 48
4.3 Desarrollo de estrategias de gestión para áreas con alta vulnerabilidad	a la
contaminación por pozos petroleros	54
5. DISCUSIÓN	62

6. C	ONCLUSIONES Y RECOMENDACIONES	64
	Conclusiones	
6.2	Recomendaciones	64
BIBI	LIOGRAFÍA	66
ANE	xos	74
APÉ	NDICE	78

ÍNDICE DE TABLAS

Tabla 1. Matriz de operacionalización de variables dependientes	40
Tabla 2. Matriz de operacionalización de variable dependiente	41
Tabla 3. Listado de fuentes utilizadas en la investigación	47
Tabla 4. Contribución porcentual de las variables de entrada al modelo	MaxEnt
	52
Tabla 5. Variables bioclimáticas para modelación en MaxEnt	75

ÍNDICE DE FIGURAS

Figura 1. Instalaciones petroleras en la Parroquia San José de Ancón 24
Figura 2. Diagrama de procesamiento de las variables para modelación 43
Figura 3. Mapa de Ubicación Geográfica de los pozos petroleros ubicados en San
José de Ancón48
Figura 4. Curva de respuesta "bio12_ec"
Figura 5. Curva de respuesta "grdi_1311"50
Figura 6. Curva de respuesta "bio14_ec"51
Figura 7. Prueba de jackniffe para evaluación de las variables aplicadas 53
Figura 8. Mapa de probabilidad de contaminación ambiental por pozos petroleros,
San José de Ancón-Santa Elena54
Figura 9. Mapa de Ubicación Geográfica del área de estudio "San José de Ancón"
74
Figura 10. Test de jackknife realizado para determinar la importancia de las
variables en la modelación74
Figura 11. Curva ROC correspondiente al rendimiento del modelo
Figura 12. Áreas potenciales de contaminación ambiental por pozos petroleros 77

,			,		
IND	ICF	DF	APE	NDI	CF

Apéndice N° 1. L	istado de coordenadas	UTM de pozos	petroleros	78
------------------	-----------------------	--------------	------------	----

1. INTRODUCCIÓN

1.1 Antecedentes del problema

La industria petrolera es una de las industrias más importantes en el mundo por el volumen de recursos económicos que giran alrededor de ella y por la acción e influencia que ejerce en todas las demás actividades industriales (Muñoz y Tomalá, 2013). Zamora y Ramos (2010) expresan que "es sabido que la industria petrolera se ha convertido en el puntal de la economía nacional, siendo la primera fuente de divisas para el país, por otro lado, los efectos de la industria petrolera para el ambiente han sido negativos en algunas áreas del territorio" (p. 116).

A partir del descubrimiento de petróleo, Ecuador emprendió un camino de desarrollo y crecimiento. En efecto, la presencia de este recurso natural en la economía ecuatoriana representó, en primer lugar, el suministro de la energía necesaria para movilizar todos los sectores productivos del país (transporte, industrial, eléctrico y doméstico) (PETROECUADOR, 2013). Sin embargo, la explotación de petróleo y sus derivados en Ecuador mantiene un historial negativo en relación con la destrucción de hábitats junto con la formación de pasivos ambientales o piscinas de crudo que han contaminado los suelos y agua de la región (Vizuete et al., 2020).

Desde el inicio del siglo XIX, la península de Santa Elena ha sido elemental en el desarrollo de la industria petrolera. En 1911, se perforó el primer pozo petrolero nombrado Ancón 1, desde entonces la producción petrolera inició en Ecuador (Escandón , 2019).

Espinel (2017) afirma que después de un siglo de extracción de petróleo en esta área, tanto los pozos como la infraestructura petrolera, las líneas de flujo y los oleoductos, han llegado a un estado mecánico obsoleto debido a la falta de mantenimiento y la ausencia de implementación de tecnologías más avanzadas. Esta situación ha dado lugar a múltiples incidentes ambientales, particularmente derrames de hidrocarburos, asociados con las operaciones en este lugar.

Wang et al. (2022) expresan que "además de los avances tecnológicos, para la prevención y remediación de suelos contaminados es importante conocer la distribución espacial de las áreas potencialmente contaminadas" (p. 54421).

A raíz de ello, se han desarrollado modelos, software y herramientas especializadas como modelos de máxima entropía, que permiten la evaluación de esta problemática e identificar sus características y riesgos potenciales. En general, el método de máxima entropía (MaxEnt) puede comprenderse como una herramienta utilizada para estimar la probabilidad de un evento de manera sistematizada. Este enfoque genera una distribución de probabilidad que se ajusta coherentemente a las restricciones probabilísticas conocidas del problema, definidas como promedios o valores esperados futuros (Jaynes, 1957).

El modelo MaxEnt se utiliza en una variedad de aplicaciones, incluida la predicción de la distribución de especies de animales, plantas y microbios, la predicción del riesgo de desastres y la evaluación de la idoneidad del hábitat (Li et al., 2024, p. 111354). Por tanto, "estos resultados muestran que MaxEnt puede identificar y predecir bien la distribución espacial de varios objetos de investigación" (Wang et al., 2022, p. 54422).

En la actualidad, la investigación sobre la aplicación de MaxEnt para la identificación de áreas vulnerables a contaminación por petróleo es limitada, siendo relevante el desarrollo de la presente investigación. Por ello, el estudio identificó las áreas altamente vulnerables a la contaminación por pozos petroleros en la región de Ancón, mediante el modelo MaxEnt, para el desarrollo de estrategias efectivas de gestión con el fin de reducir los riesgos inherentes a la actividad petrolera en esta zona particular.

1.2 Planteamiento y formulación del problema

1.2.1 Planteamiento del problema

Un elevado historial de accidentes ocurridos a lo largo de la historia de la producción petrolera demuestra los efectos devastadores y los riesgos que implican para las poblaciones expuestas. De manera que, "durante las operaciones de explotación, extracción y transporte de los bienes que brinda el suelo, los materiales y maquinaria utilizada para llevar a cabo estas actividades, contaminan el suelo a través de derrames accidentales o deliberados" (Velásquez, 2017, p. 153).

En México, Maldonado et. al (2010) expresa que, la industria petrolera es una fuente significativa de contaminación del suelo. Durante más de 40 años, las

actividades relacionadas con la perforación, extracción, transporte y procesamiento del petróleo en zonas petroleras han provocado la contaminación del suelo y el agua debido a derrames, filtraciones, lodos y desechos de perforación. Por consiguiente, "los sitios contaminados con productos derivados de petróleo presentan un desequilibrio en el ecosistema provocando que los servicios ecosistémicos que ofrece el suelo se vean afectados, perdiendo su calidad o incluso ya no poder disponer de ellos" (Pinedo et al., 2023, p. 288).

En la actualidad, la provincia de Santa Elena se posiciona como un eje de desarrollo para la actividad petrolera en la costa ecuatoriana. Según Gallardo (2022), Ancón emerge como la parroquia más golpeada por la desigualdad socio-ambiental por causa de la empresa Anglo, la cual se dedicó a la perforación de numerosos pozos entre 1922 y 1972. Según los datos oficiales del Programa de Reparación Ambiental y Social (PRAS), Ancón encabeza la lista con un total de 253 pozos abandonados y 150 fuentes de contaminación. Santa Elena enfrenta dificultades en cuanto al sellado y la restauración de estos pozos sin uso, esto convierte a Ancón en un escenario de deterioro continuo en la superficie terrestre.

Por otra parte, Biomorgi et al. (2012) manifiestan que una de las razones más comunes por las que instalaciones petroleras presentan fallos es la corrosión, generando deterioro en las instalaciones, causando problemas en el funcionamiento de las mismas. De igual manera, Espinel (2017) afirma que esta zona presenta niveles significativos de humedad y salinidad, induciendo a producir la corrosión, representando uno de los principales desafíos para Pacifpetrol, empresa que opera en el área.

Por tanto, la exploración de la contaminación ocasionada por los pozos petroleros es crucial debido a su capacidad para proporcionar una comprensión profunda de la problemática, permitiendo así el desarrollo de estrategias efectivas para mitigar los impactos ambientales en la zona de estudio.

1.2.2 Formulación del problema

¿Cuáles son las áreas específicas en Ancón con una alta probabilidad de contaminación ambiental por derrames de petróleo que provenga de pozos petroleros?

1.3 Justificación de la investigación

A través de los tiempos, ha sido notable el impacto ambiental provocado por la extracción de petróleo, tanto en las regiones donde se ubica este recurso como en las comunidades que lo rodean (Vizuete et al., 2019).

Como es ampliamente conocido, cuando se produce un incidente de contaminación ocasionado por la liberación de petróleo, la biodiversidad se ve gravemente afectada, dando lugar a consecuencias significativas, como la pérdida de hábitats para la fauna, así como la desintegración de los ecosistemas, que se tornan frágiles y sumamente desafiantes de recuperar en el transcurso del tiempo (Vizuete et al., 2019)

Según Ayauca (2023), es importante destacar que estas no son las únicas formas en las que los hidrocarburos se depositan en el medio ambiente, ya que los cortes de perforación, el agua de formación y los residuos generados durante el mantenimiento de los pozos también contienen concentraciones significativas de hidrocarburos. De este modo, los hidrocarburos y los compuestos relacionados con el petróleo entran en contacto con el medio ambiente de la misma manera que otros contaminantes (p. 14).

Por ejemplo, "la perforación de pozos y la fracturación hidráulica pueden desplazar la actividad agrícola, pero la producción de pozos puede requerir menos tierra y la agricultura puede recuperar parte de la tierra que fue previamente perturbada" (Fitzgerald et al., 2020, p. 4). En términos de impacto ambiental, la cantidad de petróleo derramado no es un factor tan grave como el lugar del accidente. Algunas áreas tienen mayor capacidad para absorber petróleo que otras y, como tal, incluso un pequeño derrame en un área sensible (a menudo áreas costeras) puede tener un gran impacto ambiental.

De igual manera, las repercusiones económicas y la contaminación ecológica derivadas de los derrames de petróleo son de extrema gravedad, y están influidas por una amplia gama de factores que abarcan todos los aspectos de la industria petrolera (Chen et al., 2019).

Cuando la concentración de hidrocarburos en el entorno supera el umbral que puede ser asimilado, se convierte en una fuente de contaminación con efectos adversos, dado que la mayoría de sus componentes resultan nocivos para la salud. Según diversos estudios, se ha constatado que ciertos elementos de estos hidrocarburos poseen propiedades cancerígenas, mientras que otros

son compuestos sintéticos que exhiben un alto grado de toxicidad. Por consiguiente, los vertidos de hidrocarburos representan una amenaza significativa para el medio ambiente, ya que estos contaminantes no pueden ser descompuestos de forma natural (Ayauca, 2023).

De manera similar, estudios anteriores realizados en áreas donde se extrae petróleo han demostrado que la exposición a estos contaminantes está relacionada con un aumento en la frecuencia de enfermedades, especialmente cutáneas, así como un crecimiento en la desnutrición infantil, incremento en el riesgo de aborto, mayor mortalidad en general y una mayor incidencia de cáncer (Manos Unidas, 2021).

Fitzgerald et al. (2020), exponen como la proximidad de los pozos a las viviendas podría potencialmente plantear riesgos para la salud pública y el medio ambiente. Asimismo, Mayorga y Reyes (2022), exponen que, en la parroquia de Ancón, se ha observado que los pozos presentan problemas mecánicos, con una elevada frecuencia de derrames en áreas donde la densidad de pozos es significativa. Además, el proceso de extracción es principalmente manual, los equipos no reciben el mantenimiento adecuado debido a las condiciones climáticas y sufren de corrosión. La producción de los pozos es inestable y la falta de implementación de nuevas tecnologías ha provocado desastres ambientales.

En consecuencia, el área está particularmente expuesta a los efectos derivados de los derrames de petróleo. Por tanto, es imperativo considerar el grave impacto ambiental que el ecosistema de la zona enfrentaría en caso de que se produjeran tales eventos (Velasteguí y Veloz, 2007).

Con base a lo expuesto, la presencia de pozos petroleros cercanos a zonas urbanas aumenta el riesgo de contaminación ambiental, lo que puede tener consecuencias adversas para la salud de la población, por tanto, conocer las áreas con alta probabilidad de contaminación permite una planificación más efectiva y sostenible del desarrollo del área, por otra parte, proporciona la toma de decisiones apropiadas que minimicen los riesgos.

De manera que, el presente estudio permitió identificar áreas vulnerables que resultan afectadas por la presencia de pozos petroleros, con el fin de facilitar la implementación de estrategias de gestión para evitar o mitigar impactos negativos en el ecosistema local.

1.4 Delimitación de la investigación

- Espacio: Se desarrolló en la parroquia San José de Ancón, provincia de Santa Elena, con coordenadas UTM 516122.00 W, 9742997.00 S (Ver Figura 9).
- Tiempo: El presente proyecto se llevó a cabo durante un periodo de seis meses.
- Población: El ámbito demográfico sobre el cual se realizó la investigación, según el último censo poblacional cuenta con 7 918 habitantes (Instituto Nacional de Estadística y Censos [INEC], 2022).

1.5 Objetivo general

Identificar las áreas con probabilidad de contaminación ambiental por pozos petroleros en Ancón a través del Modelo MaxEnt para la elaboración de estrategias de gestión.

1.6 Objetivos específicos

- Obtener las coordenadas geográficas de los pozos petroleros en el área de estudio mediante búsqueda bibliográfica.
- Aplicar el modelo de máxima entropía para la elaboración de un mapa de probabilidad de contaminación derivada de la actividad de los pozos petroleros.
- Desarrollar estrategias de gestión para áreas con alta vulnerabilidad a la contaminación por pozos petroleros.

1.7 Hipótesis o idea a defender

Una de las variables de entrada bioclimática relacionada a precipitación aporta una contribución porcentual >50% a la identificación de áreas potencialmente contaminadas derivadas del modelo MaxEnt.

2. MARCO TEÓRICO

2.1 Estado del arte

Los estudios relacionados con la identificación de áreas con probabilidad de contaminación son de vital trascendencia en la investigación ambiental, ya que permiten identificar la importancia de la misma para el equilibrio de los ecosistemas y el bienestar social. Por otra parte, el modelo de máxima entropía, aunque en un principio fue empleado para conocer la distribución de especies, actualmente, se ha aplicado en diversos campos de investigación, demostrando que, son una herramienta eficiente para la evaluación de zonas vulnerables a la contaminación, de manera que, permite la gestión de dichas zonas afectadas. A continuación, se presenta la recopilación de investigaciones referentes al presente estudio.

Ballardin et al. (2024) emplearon el modelo MaxEnt para discernir las áreas más propicias para localizar pozos de alto rendimiento en Caxias do Sul, sur de Brasil, donde se encuentra el sistema acuífero de Serra Geral, un acuífero volcánico fracturado. Para ello, seleccionaron un conjunto de datos compuesto por 83 pozos con altos caudales (≥10 m³/h) del registro municipal de pozos tubulares profundos, junto con 14 factores que influyen en la presencia de agua subterránea (capacidad específica, transmisividad, altitud, pendiente, curvatura horizontal, curvatura vertical), índice de disección del relieve, densidad de drenaje, distancia al drenaje, índice de humedad topográfica, distancia al lineamiento, densidad de lineamientos, precipitación y grupo hidrológico del suelo). El resultado del modelo fue un mapa de potencial de agua subterránea, que expresa la probabilidad de alcanzar caudales ≥10 m³/h. A través de este estudio se puede observar que, si bien el modelo MaxEnt se usa ampliamente en ecología para modelar la distribución de especies, su aplicación en la predicción de aguas subterráneas actúa de forma eficiente, particularmente en acuíferos fracturados asociados con rocas volcánicas.

Ngarega et al. (2021) ejecutaron MaxEnt para mapear las distribuciones geográficas de hábitats apropiados para *Colophospermum mopane* en el sur de África en las condiciones actuales y futuras bajo escenarios de cambio climático. Determinaron que factores como la radiación solar, la temperatura anual y la precipitación anual influyen significativamente en la distribución de esta especie,

así como las condiciones óptimas para la especie son precipitaciones anuales de 130 a 200 mm, temperaturas anuales de 22 a 28 °C y elevaciones de 500 a 1000 m sobre el nivel del mar. Además, descubrieron que las áreas de hábitat apropiado reducirán en los límites norte de la distribución potencial, pero se expandirán en los límites sur. Por último, estos hallazgos son imprescindibles para la preservación de la biodiversidad y son significativos para la planificación y administración con el fin de proteger esta especie de la extinción en el futuro.

Wang et al. (2022) identificaron las áreas potencialmente contaminadas por la industria petroquímica en China mediante el modelo MaxEnt, obteniendo la correlación entre las zonas afectadas por los factores naturales, socioeconómicos y de tráfico, elaboraron un mapa de las zonas contaminadas indicando que las áreas con alta probabilidad de contaminación se distribuyeron en el delta del río Yangtze, Beijing, Tianjin, el sur de Guangdong, las áreas costeras de Fujian, el centro de Hubei y el noreste de Hunan, el centro de Sichuan y el suroeste de Chongqing. Las respuestas de las variables presentaron que la alta probabilidad de contaminación petroquímica tendía a presentarse en ciudades con economía desarrollada, densidad de población y transporte eficiente, proporcionando una base teórica para formular futuras estrategias de gestión en zonas vulnerables a contaminación por petroquímica.

Kang et al. (2023) emplearon el modelo MaxEnt para la predicción espacial de las probabilidades de contaminación del suelo derivada de la industria minera metálica en China. Evaluaron cuantitativamente las relaciones entre las probabilidades de contaminación del suelo y los principales factores ambientales, obteniendo que las áreas con probabilidades de contaminación del suelo superiores al 54% estaban principalmente dispersas en las partes este, suroeste y centro-sur de China, mientras que, las variables de PIB, la densidad de población, los tipos de suelo, la precipitación media anual y los tipos de uso de la tierra fueron las variables que más contribuyeron a la predicción de la contaminación del suelo. Estos hallazgos proporcionaron un respaldo importante para la toma de decisiones relacionadas con el control de la contaminación del suelo derivada de la industria minera metálica en China.

Mercado (2022) evaluó modelo la pluma de contaminación en un caso de derrame de crudo en la refinería "La Libertad", provincia de Santa Elena, empleó variables físicas, geomorfológicas y climáticas junto a parámetros elementales

para la modelación del derrame. Para ello, utilizó el software Model Muse junto a las herramientas MODFLOW 6 y NWT para generar el mapa de flujo regional del terreno y la pluma contaminante. Los resultados expusieron que la pluma de contaminación se desarrolla en un rango de 742 m², en el cual influye las condiciones del terreno siendo propicio para el trasporte de contaminantes, esto se debe a que, presenta una textura moderadamente fina con una pendiente de 0 a 45%, una altura máxima de 37 m y un coeficiente de permeabilidad de 1 E-5, por tanto, estas variables sumadas a la precipitación media anual de 263.7 mm y la evapotranspiración media anual de 1263.6 mm, son las que presentan mayor preeminencia para la simulación de derrames de crudo.

Herrera et al. (2022) realizaron un estudio en Santa Elena, Ecuador, mediante la implementación del modelo CLUE-S de uso del suelo, utilizando análisis tanto espaciales como no espaciales para adquirir datos significativos que orienten la toma de decisiones, debido a la elevada susceptibilidad en numerosos sectores urbanos y en áreas próximas a la costa. El análisis espacial consistió en la geolocalización de pozos y el análisis estadístico de su distribución espacial, resultando en la elaboración de un mapa que muestra la incidencia de pozos petroleros en los sectores de Salinas y La Libertad. Posteriormente, emplearon la matriz FODA para establecer estrategias de desarrollo que respaldaran la toma de decisiones de la población cercana a los pozos petroleros. Los resultados señalan una elevada vulnerabilidad en varios sectores urbanos y cercanos a la costa. Además, el análisis CLUE-S revela que el crecimiento poblacional en el área urbana está en estrecha proximidad a las zonas de pozos petroleros, lo que crea un complejo polo de interacción entre el hombre y la industria que influye en la gestión del territorio.

Mayorga y Reyes (2022) identificaron zonas vulnerables en el bloque Gustavo Galindo Velasco, más conocido como Campo Ancón, y proponen una alternativa para reducir los tiempos de respuesta ante emergencias mediante la metodología basada en el uso de Sistemas de Información Geográfica, llevaron a cabo análisis de buffers alrededor de cada derrame utilizando un radio de impacto de 100 metros. Como resultado, identificaron 297 derrames y delimitaron 6 áreas con una alta probabilidad de ocurrencia de estos eventos, abarcando un total de 109 km², lo que equivale al 16% del territorio continental del Bloque Gustavo Galindo Velasco, determinando que la mayoría de los

derrames se atribuyen a la falta de mantenimiento tanto preventivo como correctivo de equipos e instalaciones, así como al uso de mecanismos de extracción de crudo operados de forma manual. Finalmente, los resultados obtenidos en este proyecto son de alta relevancia en el campo científico dado que no existen estudios similares en la zona de análisis, fomentando la conservación biológica y la prevención de la contaminación.

2.2 Bases científicas y teóricas de la temática

2.2.1 San José de Ancón

San José de Ancón, esta parroquia se encuentra situada en el cantón Santa Elena, corresponde al 5% del total de población cantonal y tiene una superficie de 65.94 km² (GAD San José de Ancón, 2020, p. 104).

La parroquia ha estado marcada por su operación petrolera, lo que ha llevado a que su situación actual como Patrimonio Cultural Nacional se deba a su origen como campamento minero hace cien años. Sin embargo, esta misma actividad petrolífera genera los principales problemas ambientales y sociales, especialmente en la cabecera parroquial, donde se encuentra la industria extractora del petróleo (GAD San José de Ancón, 2020, p. 105).

Figura 1. Instalaciones petroleras en la Parroquia San José de Ancón

Fuente: GAD San José de Ancón, 2020

2.2.2.1. Usos de suelo actual

Por causa de que, el área es considerada un recinto petrolero, la extracción de petróleo es una actividad común en San José de Ancón. La

agricultura es escasa, y solo alrededor del 3% del territorio está ocupado por viviendas, el resto se compone de matorrales de bosque seco. Actualmente, el suelo está altamente contaminado por los derrames de petróleo que ocurren cerca de los balancines, dentro de la zona poblada (GAD San José de Ancón, 2020, p. 108).

2.2.2.2. Actividad hidrocarburífera

La actividad hidrocarburífera ha producido una infinidad de pasivos ambientales; pozos mal cerrados, falta de mantenimiento de los mismos, derrames ocasionados por la operación del campo, a más de las emanaciones o afloramientos naturales de petróleo que se encuentran en los tres cantones siendo más evidente en la zona poblada de La Libertad y Salinas donde grandes extensiones de tierra se encuentran contaminadas con petróleo.

En la Auditoria Ambiental del 2008 del Campo GGV se determina que el volumen total de suelos contaminados en todo el campo GGV asciende a valor de 87 961.3 m³ de suelos impactados con hidrocarburos. De este total, 72 043.5 m³ corresponden a pozos que se encuentran actualmente en operación. De aquí parte la determinación del volumen de suelo contaminados heredados como pasivos ambientales de antiguas operadoras y del volumen de suelos a remediar por PACIFPETROL S.A considerado su mayor pasivo. Existen 162 pasivos ambientales en el campo.

Espinel (2017) manifiesta que "actualmente la empresa Pacifpetrol realiza operaciones de explotación, producción, transporte y almacenamiento. Para la explotación de hidrocarburos se utilizan cuatro sistemas de extracción: Bombeo mecánico, sistema pistón, flujo natural y herramienta local" (p. 27).

2.2.2 Contaminación ambiental

Se refiere a la presencia de sustancias nocivas para la salud, seguridad y bienestar de las personas, así como para los seres vivos en general. Dichos agentes pueden ser de tipo físico, químico o biológico, de manera individual o combinada, y se presenta en lugares, formas, medios y concentraciones que representan un riesgo para la salud y el entorno (Palacios y Moreno, 2022).

Principalmente, la problemática ambiental se origina como resultado de las perturbaciones causadas por la modificación puede desencadenar una serie de efectos, como la contaminación del aire, agua y suelo, teniendo múltiples implicaciones para la sociedad que engloba aspectos como el bienestar social y el valor atribuido a la naturaleza y la salud pública (Grijalva et al., 2020).

2.2.3 Industria petrolera

La industria petrolera incluye los procesos globales de exploración, extracción, refinación, transporte (oleoductos, petroleros/barcazas, camiones y ferrocarriles) y comercialización de productos petrolíferos (Jafarinejad, 2017).

Según Zambrano (2015), las fases de la industria petrolera son:

Exploración. – radica en el reconocimiento de depósitos de petróleo con métodos físicos y sísmicos.

Explotación. – sustracción de hidrocarburo y gas mediante de excavación de pozos y levantamiento de infraestructura para su comercio y depósito.

Refinación. – es el proceso donde el crudo se transforma en combustible, añadiendo valor al producto y satisfaciendo tanto las necesidades energéticas internas como la demanda para exportación.

2.2.4 Pozo Petrolero

Es una estructura convencional que excava en la superficie para extraer petróleo o gas natural. Dicho sistema funciona utilizando una torre de perforación, que está equipada con una broca. El instrumento de perforación gira mientras corta a través de la roca, permitiendo el ascenso de la herramienta a través del pozo, siendo el responsable de llevar el petróleo y el gas natural hacia el exterior.

Los pozos de petróleo se pueden dividir en dos categorías principales: pozos verticales y pozos direccionales. Los pozos verticales se perforan en una línea recta, mientras que los pozos direccionales se perforan en una trayectoria no vertical. Los pozos direccionales se utilizan para acceder a yacimientos de petróleo o gas natural que se encuentran en áreas remotas o difíciles de alcanzar.

Pichina y Vera (2024) manifiestan que el proceso de perforación de un pozo de petróleo se puede dividir en las siguientes etapas:

 Planificación: En esta etapa, se recopila información sobre el yacimiento, se diseña la trayectoria del pozo y se seleccionan los equipos y materiales necesarios.

- Perforación: En esta etapa, se perfora el pozo siguiendo la trayectoria diseñada.
- Cementación: En esta etapa, se cementa el pozo para sellarlo y protegerlo de la corrosión.
- Terminación: En esta etapa, se perforan las ramas de producción y se instalan los equipos necesarios para la producción de petróleo o gas natural.

2.2.5 Derrames de petróleo

Un derrame de petróleo se lo define como la descarga de hidrocarburos tanto en tierra como en cuerpos de agua, que han provocado contaminación y degradación. Los derrames de petróleo traen consigo efectos adversos sobre el hombre o sobre el medio que lo rodea, directa o indirectamente, producto de su liberación accidental o intencionada en el ambiente (Ortínez et. al, 2003).

2.2.5.1. Causas de los derrames de petróleo.

Las fuentes primordiales asociadas con los derrames de petróleo son los factores humanos y materiales (equipos e instalaciones). Las causas más frecuentes comprenden la corrosión interna o externa de las infraestructuras petroleras, fallos o roturas en equipos y oleoductos, falta de mantenimiento preventivo en equipos e instalaciones, errores humanos, actos de terrorismo y deterioro (Guerrero, 2014).

2.2.5.2. Efectos de las actividades petrolíferas.

Según Azqueta y Delacámara (2008), los efectos de las actividades petrolíferas pueden clasificarse en las tres categorías principales que se enumeran a continuación:

- a) Efectos directos. Se relacionan de manera directa con las actividades fundamentales relacionadas con el petróleo (exploración, extracción, desplazamiento y bombeo). Son los siguientes:
 - Dispersión de contaminantes atmosféricos, por escapes fortuitos y la quema de gas, además, se contempla los compuestos orgánicos volátiles almacenados en los reservorios para desechos del petróleo.

- Derrames esporádicos y filtraciones que afectan el suelo y los cuerpos hídricos (subterráneos y superficiales) con repercusiones en el bienestar social.
- Descarga de agua contaminada al medio, derivada del proceso de extracción del petróleo.
- b) Efectos indirectos. Relacionado de manera indirecta con las operaciones petroleras, sin embargo, se derivan del proceso, como la edificación de rutas de acceso que posibilita la expansión de nuevas áreas.
- c) Efectos inducidos. Se generan debido a las actividades relacionadas con la explotación petrolera, como el aumento de zonas urbanas, desarrollo urbanístico y socioeconómico, y el incremento de necesidades básicas de las comunidades.

2.2.6 Sistemas de Información Geográfica (SIG)

Son instrumentos principales para administrar información geográfica y operar con datos georreferenciados. Caracteriza dicha información de manera visual para abordar desafíos en la organización y manejo. Estos sistemas son esencialmente eficientes para resolver asuntos relacionadas con la planificación, administración y distribución de recursos (Flores y Fernández, 2017).

2.2.6.1. Sistema de Posicionamiento Global (GPS).

El Sistema de Posicionamiento Global (GPS) es un instrumento de localización que emplea telecomunicación espacial. Su técnica fundamental consiste en medir las distancias entre el receptor y algunos satélites observados simultáneamente, y las posiciones de los satélites se pronostican y transmiten junto con la señal GPS al usuario. A través de varias posiciones conocidas (de los satélites) y las distancias medidas entre el receptor y los satélites se puede determinar la posición del receptor. El cambio de posición, que también se puede determinar, es entonces la velocidad del receptor (Xu y Xu, 2016).

2.2.7 Modelo de Máxima Entropía

Según Phillips et al. (2006), es un método de propósito general para hacer predicciones o inferencias a partir de información incompleta, radica en evaluar una distribución de probabilidad esperada determinando la distribución de máxima entropía (es decir, la más uniforme o menos sesgada posible) que

cumpla con un conjunto de condiciones. Estas condiciones desempeñan la información parcial sobre la distribución esperada. La información disponible sobre la distribución objetivo se expresa a través de un conjunto de variables de valor real, denominadas "características", y las limitaciones implican que el valor deseado de cada característica debe igualar su promedio empírico (el promedio calculado a partir de un conjunto de muestras tomadas de la distribución objetivo).

2.2.7.1. MaxEnt.

Su objetivo principal radica en evaluar como asignar la máxima probabilidad de distribución de la especie, este enfoque computacional permite alcanzar de manera más precisa y detallada como los factores ambientales influyen en la presencia o ausencia de la especie, siendo de gran utilidad para el análisis y planificación (Navas, 2024, p. 17).

El incremento de la aplicación de MaxEnt radica en su facilidad de empleo, debido a su forma de operar, ya que la data requerida para su ejecución son los puntos de ubicación georreferenciadas de presencia del objeto de estudio, asociado a las variables bioclimáticas, por tanto, esto ha conllevado a su crecimiento y popularidad de ejecución (Navas, 2024).

En esencia, el principio de máxima entropía se basa en relacionar el problema con la entropía de la información, posteriormente, adquiere la entropía máxima de la información como una suposición útil. El objetivo se encuentra dentro de un conjunto de restricciones, y MaxEnt permite determinar la distribución de la probabilidad del objetivo de estudio al maximizar estas restricciones dadas (Wang et al., 2022).

2.2.7.1.1. Área bajo la curva (AUC).

Se refiere a una medida utilizada comúnmente en la evaluación de rendimiento de modelos en el análisis de datos, en particular en el contexto de la curva ROC (Receiver Operating Vharacteristic). Abad (2024) declara que "un AUC cercano a 1 indica mejor rendimiento del modelo, es decir, una capacidad más fuerte para predecir con precisión la presencia o ausencia de la especie en función de los datos y las variables ambientales consideradas en el modelo".

2.2.8. Tipos de medidas ambientales

2.2.8.1. Medidas preventivas.

2.2.8.1.1. Planes de emergencia y contingencia.

Se presentan como metodologías e instrumentos con fines organizativos que tienen el propósito de gestionar las circunstancias negativas e insospechadas que se presentan de diversas maneras, por tanto, buscan reducir el impacto negativo de estas situaciones, salvaguardando la integridad de los ecosistemas, las comunidades y los recursos del medio, sin detener las prácticas operacionales (Ormaza y Sarmiento, 2020).

2.2.8.1.2. Modelo de gestión ambiental.

Es una herramienta que forma parte del sistema general de gestión de una organización, a través de la planificación y estructuración de actividades, procedimientos y medios a emplear con el propósito de llevar a cabo, inspeccionar y mantener al día la política y estrategia medioambiental de la organización (Heras et al., 2008).

Por tanto, ejerce como un método que puede ser empleado dentro de una institución pública o privada de forma voluntaria, proporcionando un crecimiento en el ámbito ambiental de la empresa (López et al., 2017).

2.2.8.2. Medidas de contención.

2.2.8.2.1. Absorbentes.

Es una técnica eficiente y económicamente viable, efectiva para la absorción y contención en el caso de un derrame de petróleo, siendo ambientalmente amigable, debido a su naturaleza, generalmente, se emplean fibras naturales, siendo estas de tipo vegetal o animal. Son preferidos ya que son en su mayor parte biodegradables y seguros para su disposición. Estos absorbentes pueden ser clasificados dentro de tres grupos: productos minerales inorgánicos, productos orgánicos sintéticos y productos orgánicos vegetales (Téllez, 2007).

2.2.8.3. Medidas de limpieza.

2.2.8.3.1. Biorremediación.

De acuerdo con Suarez (2013), es una tecnología que generalmente no emplea equipos estructurales que representen impactos significativos en el

ambiente, generalmente, se puede ejecutar en cualquier proceso mediante tecnologías biológicas con el fin de restaurar el suelo u agua afectados. Este método puede aplicarse de diferentes formas:

In Situ: perforando el área y manipulando a pie de excavación.

Ex Situ: en este tipo de caso, debe emplearse una evaluación de variables y cualidades de la zona contaminada a tratar.

2.3. Marco Legal

CONSTITUCIÓN DE LA REPÚBLICA DEL ECUADOR (2008) TÍTULO II DERECHOS Capítulo segundo Derechos del buen vivir Sección segunda Ambiente sano

Art. 14.- Se reconoce el derecho de la población a vivir en un ambiente sano y ecológicamente equilibrado, que garantice la sostenibilidad y el buen vivir, sumak kawsay. Se declara de interés público la preservación del ambiente, la conservación de los ecosistemas, la biodiversidad y la integridad del patrimonio genético del país, la prevención del daño ambiental y la recuperación de los espacios naturales degradados (p.14).

Capítulo séptimo

Derechos de la naturaleza

Art. 71.- La naturaleza o Pacha Mama, donde se reproduce y realiza la vida, tiene derecho a que se respete integralmente su existencia y el mantenimiento y regeneración de sus ciclos vitales, estructura, funciones y procesos evolutivos.

Toda persona, comunidad, pueblo o nacionalidad podrá exigir a la autoridad el cumplimiento de los derechos de la 31 naturaleza. Para aplicar e interpretar estos derechos se observarán los principios establecidos en la Constitución, en lo que proceda (p. 35-36).

Art. 72.- La naturaleza tiene derecho a la restauración. Esta restauración será independiente de la obligación que tienen el Estado y las personas naturales o jurídicas de indemnizar a los individuos y colectivos que dependan de los sistemas naturales afectados (p. 36).

Capítulo segundo Biodiversidad y recursos naturales Sección primera Naturaleza y ambiente

Art. 395.- La Constitución reconoce los siguientes principios ambientales (p. 188):

 El Estado garantizará un modelo sustentable de desarrollo, ambientalmente equilibrado y respetuoso de la diversidad cultural, que conserve la biodiversidad y la capacidad de regeneración natural de los ecosistemas, y asegure la satisfacción de las necesidades de las generaciones presentes y futuras.

- 2. Las políticas de gestión ambiental se aplicarán de manera transversal y serán de obligatorio cumplimiento por parte del Estado en todos sus niveles y por todas las personas naturales o jurídicas en el territorio nacional.
- 3. El Estado garantizará la participación activa y permanente de las personas, comunidades, pueblos y nacionalidades afectadas, en la planificación, ejecución y control de toda actividad que genere impactos ambientales.
- 4. En caso de duda sobre el alcance de las disposiciones legales en materia ambiental, éstas se aplicarán en el sentido más favorable a la protección de la naturaleza.

Art. 406.- El Estado regulará la conservación, manejo y uso sustentable, recuperación, y limitaciones de dominio de los ecosistemas frágiles y amenazados; entre otros, los páramos, humedales, bosques nublados, bosques tropicales secos y húmedos y manglares, ecosistemas marinos y marinos costeros. Art. 407.- Se prohíbe la actividad extractiva de recursos no renovables en las áreas protegidas y en zonas declaradas como intangibles, incluida la explotación forestal. Excepcionalmente dichos recursos se podrán explotar a petición fundamentada de la Presidencia de la República y previa declaratoria de interés nacional por parte de la Asamblea Nacional, que, de estimarlo conveniente, podrá convocar a consulta popular (p. 191).

Art. 408.- Son de propiedad inalienable, imprescriptible e inembargable del Estado los recursos naturales no renovables y, en general, los productos del subsuelo, yacimientos minerales y de hidrocarburos, substancias cuya naturaleza sea distinta de la del suelo, incluso los que se encuentren en las áreas cubiertas por las aguas del mar territorial y las zonas marítimas; así como la biodiversidad y su patrimonio genético y el espectro radioeléctrico. Estos bienes sólo podrán ser explotados en estricto cumplimiento de los principios ambientales establecidos en la Constitución. El Estado participará en los beneficios del aprovechamiento de estos recursos, en un monto que no será inferior a los de la empresa que los explota. El Estado garantizará que los mecanismos de producción, consumo y uso de los recursos naturales y la energía preserven y recuperen los ciclos naturales y permitan condiciones de vida con dignidad (Asamblea Nacional, 2008, p. 191-192).

Art. 414.- El Estado adoptará medidas adecuadas y transversales para la mitigación del cambio climático, mediante la limitación de las emisiones de gases de efecto invernadero, de la deforestación y de la contaminación atmosférica; tomará medidas para la conservación de los bosques y la vegetación, y protegerá a la población en riesgo (p. 193).

Art. 415.- El Estado central y los gobiernos autónomos descentralizados adoptarán políticas integrales y participativas de ordenamiento territorial urbano y de uso del suelo, que permitan regular el crecimiento urbano, el manejo de la fauna urbana e incentiven el establecimiento de zonas verdes. Los gobiernos autónomos descentralizados desarrollarán programas de uso racional del agua, y de reducción reciclaje y tratamiento adecuado de desechos sólidos y líquidos. Se incentivará y facilitará el

transporte terrestre no motorizado, en especial mediante el establecimiento de ciclo vías (p. 193).

CONVENIO INTERNACIONAL SOBRE COOPERACIÓN, PREPARACIÓN Y LUCHA CONTRA LA CONTAMINACIÓN POR HIDROCARBUROS (1995)

Art. 6. Sistemas nacionales y regionales de preparación y lucha contra la contaminación.

- 1. Cada parte establecerá un sistema nacional para hacer frente con prontitud y de manera eficaz a los sucesos de contaminación por hidrocarburos. Dicho sistema incluirá como mínimo:
- a) La designación de:
 - la autoridad nacional o las autoridades nacionales competentes responsables de la preparación y la lucha contra la contaminación por hidrocarburos;
 - ii) el punto o los puntos nacionales de contacto encargados de recibir y transmitir las notificaciones de contaminación por hidrocarburos a que se hace referencia en el artículo 4, y
 - iii) una autoridad facultada por el Estado para solicitar asistencia o decidir prestarla;
- b) un plan nacional de preparación y lucha para contingencias que incluya las interrelaciones de los distintos órganos que lo integren, ya sean públicos o privados, y en el que se tengan en cuenta las directrices elaboradas por la Organización.

LEY DE HIDROCARBUROS (2023) (Decreto Supremo No. 2967) Capítulo I

DISPOSICIONES FUNDAMENTALES

Art 1.- Los yacimientos de hidrocarburos y sustancias que los acompañan, en cualquier estado físico en que se encuentren situados en el territorio nacional, incluyendo las zonas cubiertas por las aguas del mar territorial, pertenecen al patrimonio inalienable e imprescriptible del Estado.

Y su explotación se ceñirá a los lineamientos del desarrollo sustentable y de la protección y conservación del medio ambiente (p. 2).

Capítulo III

FORMAS CONTRACTUALES

Art 31.- PETROECUADOR y los contratistas o asociados, en exploración y explotación de hidrocarburos, en refinación, en transporte y en comercialización, están obligados, en cuanto les corresponda, a lo siguiente:

- b) Someter a la aprobación de la Secretaría de Hidrocarburos los planes de exploración y desarrollo de yacimientos o de otras actividades industriales, antes de iniciar su ejecución;
- c) Suministrar a la Secretaría de Hidrocarburos, trimestralmente o cuando lo solicite, informes sobre todos los trabajos topográficos, geológicos, geofísicos, de perforación, de producción, de evaluación y estimación de reservas, y demás actividades acompañando los planos y documentos correspondientes;

- s) Presentar para la aprobación de la Secretaría de Hidrocarburos los planes, programas y proyectos y el financiamiento respectivo para que las actividades de exploración y explotación no afecten negativamente a la organización económica y social de la población asentada en las áreas donde se realicen las mencionadas actividades y a todos los recursos naturales renovables y no renovables locales. Igualmente, deberá planificarse los nuevos asentamientos poblacionales que fueren necesarios. Para la antedicha aprobación el Ministerio del Ramo contará con los informes de los organismos de desarrollo regional respectivos y del Ministerio de Bienestar Social.
- t) Conducir las operaciones petroleras de acuerdo a las leyes y reglamentos de protección del medio ambiente y de la seguridad del país y con relación a la práctica internacional en materia de preservación de la riqueza ictiológica y de la industria agropecuaria. Para el efecto, en los contratos, constarán las garantías respectivas de las empresas contratistas.
- u) Elaborar estudios de impacto ambiental y planes de manejo ambiental para prevenir, mitigar, controlar, rehabilitar y compensar los impactos ambientales y sociales derivados de sus actividades. Estos estudios deberán ser evaluados y aprobados por el Ministerio de Energía y Minas en coordinación con los organismos de control ambiental y se encargará de su seguimiento ambiental, directamente o por delegación a firmas auditoras calificadas para el efecto (p. 19)

CÓDIGO ORGÁNICO DEL AMBIENTE (2017) LIBRO PRELIMINAR TITULO III REGIMEN DE RESPONSABILIDAD AMBIENTAL

Art. 10.- De la responsabilidad ambiental. El Estado, las personas naturales y jurídicas, así como las comunas, comunidades, pueblos y nacionalidades, tendrán la obligación jurídica de responder por los daños o impactos ambientales que hayan causado, de conformidad con las normas y los principios ambientales establecidos en este Código (p. 15).

Art. 11.- Responsabilidad objetiva. De conformidad con los principios y garantías ambientales establecidas en la Constitución, toda persona natural o jurídica que cause daño ambiental tendrá responsabilidad objetiva, aunque no exista dolo, culpa o negligencia.

Los operadores de las obras, proyectos o actividades deberán mantener un sistema de control ambiental permanente e implementarán todas las medidas necesarias para prevenir y evitar daños ambientales, especialmente en las actividades que generan mayor riesgo de causarlos (p. 15).

LIBRO TERCERO
DE LA CALIDAD AMBIENTAL
TITULO II
SISTEMA UNICO DE MANEJO AMBIENTAL
CAPITULO I
DEL REGIMEN INSTITUCIONAL

Art. 164.- Prevención, control, seguimiento y reparación integral. En la planificación nacional, local y seccional, se incluirán obligatoriamente planes, programas o proyectos que prioricen la prevención, control y seguimiento de la contaminación, así como la reparación integral del daño ambiental, en concordancia con el Plan Nacional de Desarrollo, y las políticas y estrategias que expida la Autoridad Ambiental Nacional.

De manera coordinada, los Gobiernos Autónomos Descentralizados Provinciales, Metropolitanos y Municipales, incluirán prioritariamente en su planificación, la reparación integral de los daños y pasivos ambientales ocasionados en su circunscripción territorial, que no hayan sido reparados. Asimismo, llevarán un inventario actualizado de dichos daños, los que se registrarán en el Sistema Único de Información Ambiental (p.49).

REGLAMENTO AMBIENTAL DE ACTIVIDADES HIDROCARBURÍFERAS (2021) CAPITULO III DISPOSICIONES GENERALES

- Art. 25.- Manejo y almacenamiento de crudo y/o combustibles. Para el manejo y almacenamiento de combustibles y petróleo se cumplirá con lo siguiente:
- a) Instruir y capacitar al personal de operadoras, subcontratistas, concesionarios y distribuidores sobre el manejo de combustibles, sus potenciales efectos y riesgos ambientales, así como las señales de seguridad correspondientes, de acuerdo a normas de seguridad industrial, así como sobre el cumplimiento de los Reglamentos de Seguridad Industrial del Sistema PETROECUADOR vigentes, respecto al manejo de combustibles;
- b) Los tanques, grupos de tanques o recipientes para crudo y sus derivados así como para combustibles se regirán para su construcción con la norma API 650, API 12F, API 12D, UL 58, UL 1746, UL 142 o equivalentes, donde sean aplicables, deberán mantenerse herméticamente cerrados, a nivel del suelo y estar aislados mediante un material impermeable para evitar filtraciones y contaminación del ambiente, y rodeados de un cubeto técnicamente diseñado para el efecto, con un volumen igual o mayor al 110% del tanque mayor;
- c) Los tanques o recipientes para combustibles deben cumplir con todas las especificaciones técnicas y de seguridad industrial del Sistema PETROECUADOR, para evitar evaporación excesiva, contaminación, explosión o derrame de combustible. Principalmente se cumplirá la norma NFPA-30 o equivalente;
- d) Todos los equipos mecánicos tales como tanques de almacenamiento, tuberías de productos, motores eléctricos y de combustión interna estacionarios, así como compresores, bombas y demás conexiones eléctricas, deben ser conectados a tierra;
- e) Los tanques de almacenamiento de petróleo y derivados deberán ser protegidos contra la corrosión a fin de evitar daños que puedan causar filtraciones de petróleo o derivados que contaminen el ambiente;
- f) Los sitios de almacenamiento de combustibles serán ubicados en áreas no inundables. La instalación de tanques de almacenamiento de

combustibles se realizará en las condiciones de seguridad industrial establecidas reglamentariamente en cuanto a capacidad y distancias mínimas de centros poblados, escuelas, centros de salud y demás lugares comunitarios o públicos;

g) Los sitios de almacenamiento de combustibles y/o lubricantes de un volumen mayor a 700 galones deberán tener cunetas con trampas de aceite. En plataformas offshore, los tanques de combustibles serán protegidos por bandejas que permitan la recolección de combustibles derramados y su adecuado tratamiento y disposición; y,

Art. 27.- Operación y mantenimiento de equipos e instalaciones.- Se deberá disponer de equipos y materiales para control de derrames así como equipos contra incendios y contar con programas de mantenimiento tanto preventivo como correctivo, especificados en el Plan de Manejo Ambiental, así como documentado y reportado anualmente en forma resumida a través de la Dirección Nacional de Protección Ambiental Hidrocarburífera a la Subsecretaría de Protección Ambiental del Ministerio de Energía y Minas.

Durante la operación y mantenimiento se dispondrá, para respuesta inmediata ante cualquier contingencia, del equipo y materiales necesarios, así como personal capacitado especificados en el Plan de Contingencias del Plan de Manejo Ambiental, y se realizarán periódicamente los respectivos entrenamientos y simulacros.

LA AGENDA 2030 Y LOS OBJETIVOS DE DESARROLLO SOSTENIBLE (2015)

OBJETIVO 7: Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos Metas del Objetivo 7

7.a De aquí a 2030, aumentar la cooperación internacional para facilitar el acceso a la investigación y la tecnología relativas a la energía limpia, incluidas las fuentes renovables, la eficiencia energética y las tecnologías avanzadas y menos contaminantes de combustibles fósiles, y promover la inversión en infraestructura energética y tecnologías limpias.

OBJETIVO 9: Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación Metas del Objetivo 9

9.4 De aquí a 2030, modernizar la infraestructura y reconvertir las industrias para que sean sostenibles, utilizando los recursos con mayor eficacia y promoviendo la adopción de tecnologías y procesos industriales limpios y ambientalmente racionales, y logrando que todos los países tomen medidas de acuerdo con sus capacidades respectivas.

OBJETIVO 13: Adoptar medidas urgentes para combatir el cambio climático y sus efectos Metas del Objetivo 13

13.b Promover mecanismos para aumentar la capacidad para la planificación y gestión eficaces en relación con el cambio climático en los países menos adelantados y los pequeños Estados insulares en

desarrollo, haciendo particular hincapié en las mujeres, los jóvenes y las comunidades locales y marginadas.

OBJETIVO 15: Proteger, restablecer y promover el uso sostenible de los ecosistemas terrestres, gestionar sosteniblemente los bosques, luchar contra la desertificación, detener e invertir la degradación de las tierras y detener la pérdida de biodiversidad Metas del Objetivo 15

- 15.1 De aquí a 2020, asegurar la conservación, el restablecimiento y el uso sostenible de los ecosistemas terrestres y los ecosistemas interiores de agua dulce y sus servicios, en particular los bosques, los humedales, las montañas y las zonas áridas, en consonancia con las obligaciones contraídas en virtud de acuerdos internacionales.
- 15.6 Promover la participación justa y equitativa en los beneficios derivados de la utilización de los recursos genéticos y promover el acceso adecuado a esos recursos, según lo convenido internacionalmente.

3. MATERIALES Y MÉTODOS

3.1 Enfoque de la investigación

El enfoque de la investigación es de tipo mixto, funcionando como un proceso que recolecta, examina y relaciona datos cuantitativos y cualitativos en una misma exploración, de manera que, permite contestar a un planteamiento, considerando que ambos métodos trabajan conjuntamente en la generalidad de sus etapas, siendo efectivo combinarlos para adquirir información que permita obtener una comprensión e interpretación, lo más amplia posible, del fenómeno en estudio (Guelmes y Nieto, 2015).

De modo que, el presente estudio empleó la recopilación de datos ambientales y geoespaciales como variables de entrada para la identificación de zonas potencialmente vulnerables a contaminación ambiental por pozos petroleros, permitiendo obtener un análisis holístico del objeto de estudio con el fin de desarrollar estrategias efectivas para el problema.

3.1.1 Tipo y alcance de la investigación

El tipo de investigación de acuerdo con la siguiente clasificación:

Investigación aplicada: Tiene como propósito proveer soluciones a un problema o cuestión específica, basándose en la búsqueda y consolidación de conocimiento para su aplicación práctica, contribuyendo al incremento del desarrollo cultural y científico (Duoc, 2024). Por tanto, a través de la identificación de zonas vulnerables a contaminación por pozos petroleros se estableció estrategias de gestión para áreas con alta probabilidad de afectación en San José de Ancón.

Investigación documental: Vivero y Sánchez (2018) declaran que "se basa en la obtención del conocimiento en base a revistas científicas, fuentes bibliográficas, etc.". Por consiguiente, a través de la literatura y estudios preliminares permitió construir una base para el estudio y proporcionar un contexto profundo sobre el tema acerca de las causas y consecuencias que afectan el entorno, de igual manera, mediante indagación científica se obtuvo las coordenadas geográficas de los pozos petroleros ubicados en la zona de estudio.

Por otra parte, el alcance de la investigación se detalla a continuación:

Investigación no experimental: Según Ochoa (2021) "se realiza cuando, durante el estudio, el investigador no puede controlar, manipular o alterar a los sujetos, sino que se basa en la interpretación o las observaciones para llegar a una conclusión" (p.3). De modo que, no se manipuló las variables a emplear en el modelo MaxEnt debido a que estos son datos observados, previamente descargados de las plataformas y geoportales mencionados en el presente estudio.

Investigación Exploratoria: Consiste en la observación de un problema poco observado o analizado, con el propósito de adquirir una visión y orientación más amplia para orientar futuras investigaciones (Cimec, 2023). Así, a través de la modelación se identificó las zonas con mayor incidencia de contaminación, de manera que, los resultados obtenidos permitieron gestionar adecuadamente estas áreas afectadas para implementar medidas que mitiguen el impacto causado.

Investigación Descriptiva: Se basa en la recopilación de información puntualizada respecto al objeto de estudio, para obtener un contexto definido del mismo, permitiendo una interpretación ligada al entorno (Valle et al., 2022).

3.1.2 Diseño de investigación

El diseño de la investigación es de tipo no experimental, debido a la observación y análisis de datos obtenidos en base a la modelación realizada en el modelo MaxEnt, por tanto, no se manipuló las variables a emplear, en cambio, se obtuvo los resultados en base a los datos de entrada preexistentes.

3.2 Metodología

3.2.1 Variables

Según el tipo de investigación, se incluyen las variables.

3.2.1.1. Variable independiente.

- Ubicación de los pozos petroleros ubicados en la parroquia San José de Ancón (UTM).
- Variables bioclimáticas de WordClim (Ver Tabla 5).

- Variable socioeconómica: Índice global de privación relativa cuadriculada GRDI (Nivel de privación: 0 a 100). Está conformado por diversos componentes individuales que son:
 - o Componente construido.
 - o Tasa de dependencia infantil.
 - Tasa de mortalidad infantil.
 - o Índice subnacional de desarrollo humano.
 - VIIRS Nighttime Lights (VNL) (Luces nocturnas).

3.2.1.2. Variable dependiente.

 Probabilidad de contaminación obtenida de la modelación en MaxEnt (Probabilidad de 0 a 1).

3.2.2 Matriz de operacionalización de variables

De acuerdo al tipo de investigación, a continuación, se presenta la matriz de operacionalización de variables.

Tabla 1.

Matriz de operacionalización de variables dependientes

Variable dependiente						
Variables	Tipo	Nivel de medida	Descripción			
Ubicación de pozos petroleros	Cuantitativa	Continua	Coordenadas UTM que permitieron evaluar la influencia de la distribución espacial en la probabilidad de contaminación.			
Variables bioclimáticas	Cuantitativa	Continua	Condiciones climáticas para identificar la interacción de los factores ambientales y su incidencia en la distribución de la contaminación.			
Índice global de privación relativa cuadriculada (GRDI)	Cuantitativo	Continua	Medida empleada para relacionar la vulnerabilidad de las comunidades y su respuesta ante la contaminación.			

Elaborado por: La Autora, 2024

Tabla 2.

Matriz de operacionalización de variable dependiente

	Variable independiente								
-	Variable	Tipo	Nivel de medida	D	escripo	ción			
_	Probabilidad de contaminación obtenida de la modelación en MaxEnt	Cuantitativa	Continua	Identificar mayor ries a la ambiental petroleros.	go de	exposi tamina			

Elaborado por: La Autora, 2024

3.2.3 Recolección de datos

3.2.3.1. Recursos.

- Laptop
- Google Scholar
- Microsoft Office
- Qgis
- MaxEnt

3.2.3.2. Métodos y técnicas.

3.2.3.2.1. Obtener las coordenadas geográficas de los pozos petroleros en el área de estudio mediante búsqueda bibliográfica.

 Obtención de coordenadas geográficas mediante investigación científica.

Para la obtención de la ubicación geográfica de los pozos petroleros en la parroquia Ancón, se realizó recolección de información mediante herramientas como artículos publicados en revistas científicas, papers e investigaciones en repositorios institucionales.

Mediante este procedimiento, se visualizó la distribución espacial de los pozos petroleros siendo esto un elemento esencial en el mapeo de la probabilidad de contaminación ambiental en Ancón.

3.2.3.2.2. Aplicar el modelo de máxima entropía para la elaboración de un mapa de probabilidad de contaminación derivada de la actividad de los pozos petroleros.

Variables para la modelación de distribución

Para ejecutar el modelo de máxima entropía se realizará la descarga de datos de las siguientes variables:

Variables bioclimáticas: Resultan de los promedios mensuales de precipitación y temperatura, con el propósito de producir variables con mayor relevancia biológica (Fick y Hijmans, 2017). De modo que, se empleó 19 variables bioclimáticas y los datos de elevación, provenientes de la página global WorldClim (Global Climate Data) a una resolución espacial de 30 segundos (1 km²) y en formato GeoTiff. En la Tabla 5 se exponen las variables que se obtendrán de la página web de WorldClim.

Variable socioeconómica: Se empleó el índice global de privación relativa cuadriculada (GRID), estos datos proveen la distribución geográfica de las personas que viven en la pobreza y las condiciones de su entorno permitiendo a los planificadores establecer estrategias y decisiones que mejoren la calidad de vida de la población (Center for International Earth Science Information Network [CIESIN], 2022). Estos datos se presentan a un píxel de 30 segundos de arco (~1 km), donde un valor de 100 representa el nivel más alto de privación y un valor de 0 el más bajo.

Preparación de Datos

Para aplicar el modelo MaxEnt es necesario que los datos de presencia, es decir, las coordenadas geográficas se encuentren en un archivo CSV, organizados en dos columnas, latitud y longitud respectivamente.

Por otra parte, las variables bioclimáticas y socioeconómica, siendo estos los datos de entrada para la modelación de máxima entropía deben estar en formato ráster (Gtiff) en las mismas dimensiones.

Aplicar Variables Inicio modelo biofísicas MaxEnt Fin Unificar Realizar un todas las mapa de Obtener ariables de probabilidad coordenadas de Variables entrada en ubicación de pozos una misma bioclimáticas contaminación petroleros dimensión y formato Analizar y presentar resultados Variables socioeconómicas

Figura 2.

Diagrama de procesamiento de las variables para modelación

Elaborado por: La Autora, 2024

Elaboración del Mapa de Probabilidad

Para la elaboración del mapa de probabilidad se empleó los resultados obtenidos en el modelo MaxEnt en formato ráster (Gtiff), la modelación se analizó mediante la herramienta Qgis, a través del recorte de los límites geográficos del área de estudio, de esta manera, permitió la identificación de las zonas con probabilidad de contaminación en el área de estudio.

3.2.3.2.3. Desarrollar estrategias de gestión para áreas con alta vulnerabilidad a la contaminación por pozos petroleros.

Propuesta de estrategia de mitigación de impactos ambientales

Se elaboró una propuesta de plan de estrategias de mitigación de impactos ambientales para las áreas identificadas con alta probabilidad de contaminación ambiental por pozos petroleros, para ello, se pretende establecer las fuentes principales que generen impactos en el ecosistema, así como establecer un marco metodológico, con el propósito de gestionar y prevenir ante un evento de impacto, como medidas de emergencia y contingencia.

3.2.4. Población y muestra

3.2.4.1. Población.

La población del presente estudio corresponde a las coordenadas geográficas (UTM) de los pozos petroleros ubicados en la parroquia San José de Ancón. Según Mayorga y Reyes (2022), el área de estudio cuenta con 1303 pozos petroleros, de este modo, se emplearon las coordenadas presentes en la zona de estudio, esto se debe a que MaxEnt requiere la mayor cantidad de puntos de presencia, de esta manera, proporcionó una evaluación más eficiente.

3.2.5. Análisis estadístico

En el presente estudio se aplicó estadística probabilística, a través de estos métodos se obtuvo gráficos y áreas bajo la curva (Curvas ROC) mediante estas herramientas se evaluó la capacidad de ajuste del modelo y la contribución de cada variable de entrada aplicada.

3.2.5.1. Prueba de jackniffe.

Este método consiste en la evaluación de la contribución de cada variable de entrada al modelo para la estimación de probabilidad de zonas contaminadas en el área de estudio. Para ello, se ejecutó la valoración, dejando una variable fuera consecutivamente, para así evaluar la aportación, luego, este procedimiento permitió comparar y conocer el desempeño de cada variable al modelo, demostrando así cual o cuales son las variables con mayor significancia porcentual para la determinación de zonas afectadas por contaminación proveniente de los pozos petroleros.

Proporcionó una representación gráfica, que permite identificar la aportación de cada variable cuando es modelo es evaluado de forma individual y de forma colectiva, donde la barra azul expresa la contribución porcentual que brinda cada variable cuando se usa de manera aislada en el modelo, mientras que, la barra roja expresa la disminución en la ganancia del modelo cuando esa variable se omite. Por tanto, las variables con mayor contribución individual (barra azul alta) y aquellas cuya ausencia decrece el desempeño del modelo (barra roja alta) son estimadas las más significativas para predecir la distribución de interés (Figura 10).

De manera que, mediante el gráfico proporcionado es posible la comparación de la importancia de cada variable de forma individual, así como de forma combinada, y permitió el análisis para identificar las variables ambientales clave en la modelación.

3.2.5.2. Curvas AUC.

Por otra parte, las curvas AUC se empleó para cuantificar la capacidad predictiva del modelo aplicado. Este procedimiento proporcionó valores de 0.5 (predicción aleatoria) a 1 (predicción perfecta). Esta herramienta construye una curva que indica el valor del AUC, donde:

AUC = 0.5: el modelo no tiene capacidad predictiva

0.7 ≤ AUC < 0.8: capacidad predictiva aceptable

0.8 ≤ AUC < 0.9: capacidad predictiva excelente

AUC ≥ 0.9: capacidad predictiva sobresaliente

Es decir, a través de este método se identificó la capacidad predictiva del modelo para identificar la vulnerabilidad de una zona respecto a la contaminación por pozos petroleros.

4. RESULTADOS

4.1 Obtención de las coordenadas geográficas de los pozos petroleros en el área de estudio mediante búsqueda bibliográfica

Para la obtención de las coordenadas geográficas de los pozos petroleros ubicados en la parroquia San José de Ancón, se realizó indagación integral a través de las diferentes plataformas de investigación científica, como repositorios institucionales y gubernamentales, informes y revistas científicas, mediante este proceso se obtuvo una base de datos significativos de coordenadas geográficas que constituyen la ubicación de los pozos petroleros en el área de estudio.

La obtención de la ubicación geográfica de los pozos petroleros presentes en Ancón, cumplen un rol fundamental para el desarrollo de la presente investigación, debido a que, esta información forma parte esencial para aplicar el modelo de máxima entropía. La importancia de las coordenadas geográficas de los pozos para el desarrollo del modelo radica en el aporte que brindan en cuanto a la estimación de la probabilidad de desarrollarse contaminación en el área de estudio, esto se debe a que, al conocer la ubicación geográfica permite evaluar las condiciones ambientales del objeto de investigación, de este modo, es posible realizar un análisis más preciso en función de las circunstancias presentes en el área.

A su vez, establece una superficie de probabilidad más uniforme, permitiendo conocer donde será más probable la problemática evaluada. De este modo, permite conocer las zonas de mayor vulnerabilidad a contaminación en la zona de estudio.

Para ello, a través de la investigación en la plataforma Google Scholar, se obtuvo el artículo denominado "Análisis de Derrames de Petróleo en el Campo Ancón Mediante Sistemas de Información Geográfica", elaborado por Mayorga y Reyes (2022), donde emplearon las coordenadas geográficas de los pozos petroleros presentes en la provincia de Santa Elena, con el fin de conocer aquellas áreas expuestas a contaminación por actividades petrolíferas utilizando Sistemas de Información Geográfica. Es relevante destacar que, en el mismo informe, detallan las condiciones de las instalaciones petroleras presentes en la zona de estudio, indicando que, debido a la antigüedad que presentan y la falta

de mantenimiento a través del tiempo, generan mayor incidencia en la inducción de riesgo de contaminación ambiental.

Por otra parte, la Escuela Superior Politécnica Nacional, en el año 2021, mediante el proceso de prácticas de vinculación con la comunidad, ejecutó el proyecto denominado "Levantamiento de información actualizada de los pozos petroleros ubicados en la parroquia San José de Ancón (ubicación, señalética de seguridad, características de infraestructura, medición gases tóxicos).", realizó el levantamiento de información geográfica de los pozos presentes en la parroquia, a su vez, evaluaron las condiciones de infraestructura, señalética y gases presentes en el medio.

De igual manera, se obtuvo información del Sistema Nacional de Información, proporcionando una base de datos sobre la ubicación de los pozos petroleros presentes en la parroquia. Las coordenadas obtenidas se presentan en el Apéndice.

En la Figura 3 se expone la ubicación geográfica de los pozos petroleros presentes en la parroquia San José de Ancón. Se observa que, existe mayor representatividad de pozos presentes en la zona sur de la parroquia, a su vez, se presenta alta incidencia en área cercanas a cuerpos hídricos como el Río Las Vegas que atraviesa la parroquia.

Tabla 3.
Listado de fuentes utilizadas en la investigación

Título	Tipo de Información	Fuente	
Análisis de Derrames de Petróleo en el Campo Ancón Mediante Sistemas de Información Geográfica	Artículo científico	Mayorga y Reyes, 2022	
Levantamiento de información actualizada de los pozos petroleros ubicados en la parroquia San José de Ancón (ubicación, señalética de seguridad, características de infraestructura, medición gases tóxicos).	Informe de prácticas de vinculación con la comunidad	Burbano, 2021	
Infraestructura Ecuatoriana de Datos Geoespaciales	Datos geográficos de descarga	Sistema Nacional de Información [SNI], 2024	

Elaborado por: La Autora, 2024

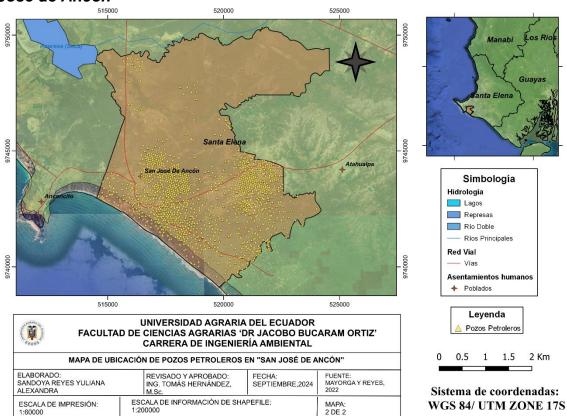
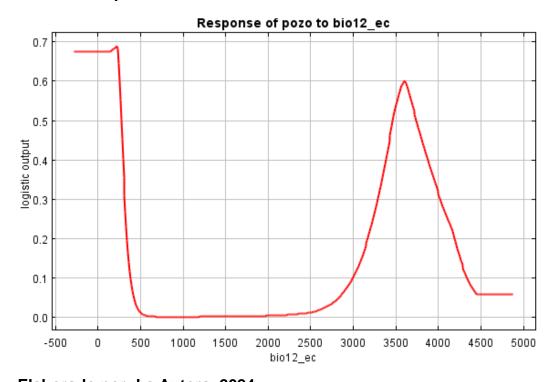


Figura 3. Mapa de Ubicación Geográfica de los pozos petroleros ubicados en San José de Ancón

Elaborado por: La Autora, 2024

4.2 Aplicación del modelo de máxima entropía para la elaboración de un mapa de probabilidad de contaminación derivada de la actividad de los pozos petroleros

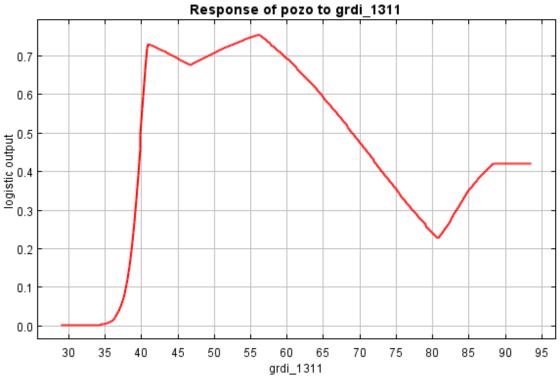
Para realizar la identificación de zonas con probabilidad de contaminación, se generó una entrada de 502 coordenadas de pozos petroleros, actuando como registro de presencia, mediante la aplicación de las variables previamente mencionadas, fue posible obtener la probabilidad de contaminación ambiental por pozos petroleros en la parroquia San José de Ancón.


En la presente investigación, la aplicación del modelo MaxEnt ha evidenciado un eficiente rendimiento respecto a la identificación de zonas potencialmente contaminadas, demostrado mediante las curvas ROC. Las curvas de respuesta permiten ver la variación de la probabilidad de presencia a medida que se evalúan las distintas variables, presentando un AUC de 0.947, definiéndose de este modo como un modelo con capacidad predictiva sobresaliente (Ver Figura 11).

De esta forma, el AUC es un indicador de que el modelo posee una excelente capacidad para evaluar la presencia de contaminación en función de las variables de entrada empleadas. Es decir, establece que el modelo es confiable, así como el conjunto de datos utilizados son relevantes para la identificación de zonas contaminadas.

Por otra parte, la variable ambiental que presenta mayor beneficio cuando se emplea de manera independiente es "bio12_ec", es decir, la precipitación anual, que parece proveer la información más relevante cuando se utiliza individualmente. Del mismo modo, cuando es omitida la variable ambiental "grdi_1311" que corresponde al índice de privación relativa cuadriculada, se reduce la aportación al modelo, esto establece que, posee una mayor cantidad de información relevante que no se encuentra en otras variables.

Figura 4.

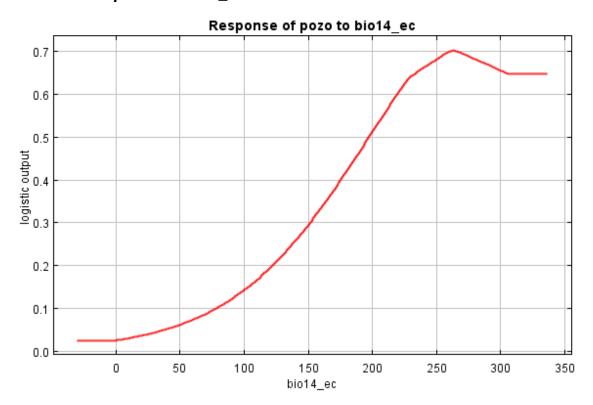

Curva de respuesta "bio12_ec"

Elaborado por: La Autora, 2024

Figura 5.

Curva de respuesta "grdi_1311"

Elaborado por: La Autora, 2024


Sin embargo, al aplicar el modelo realizando la ejecución de todas las variables, la aportación más significativa le corresponde a "bio14_ec", precipitación del mes más seco, contribuyendo con un 37%. Esto se debe a que, la precipitación puede dispersar o, en algunos casos, hacer que la contaminación generada permanezca en una misma zona. En este aspecto, en regiones con clima seco, como la parroquia San José de Ancón, caracterizado por presentar altas temperaturas y bajas precipitaciones, la ausencia de precipitación afecta de manera directa en la dinámica de la contaminación, limitando la capacidad de dispersión y eliminación de los contaminantes.

De esta manera, la precipitación se convierte en una variable determinante para comprender la presencia de contaminación en un área, ya que su ausencia puede mantener los contaminantes acumulados en el medio, mientras que la presencia podría promover su eliminación o redistribución. Dentro de este contexto, se observa que, las condiciones climáticas, como la precipitación juegan un papel fundamental en la dinámica de la contaminación de un área.

Además, mediante la obtención de resultados fue posible observar que la variable "bio14_ec", es decir, la estacionalidad de la temperatura es la siguiente en cuanto a la importancia de contribución porcentual para la aplicación del modelo, aportando con un 18.9%, por lo tanto, está relacionada con factores ambientales que son críticos para la identificación, como la temperatura o la precipitación, dependiendo de su definición específica. De modo que, esto puede influir en la disponibilidad de afectación y en las condiciones que favorecen la presencia de la contaminación.

Figura 6.

Curva de respuesta "bio14 ec"

Elaborado por: La Autora, 2024

La Tabla 4 muestra la contribución porcentual de las variables de entrada al modelo Maxent. Para determinar las estimaciones se realiza dos evaluaciones, la primera radica en cuantificar el impacto directo de cada variable, mientras que, la segunda estima la legitimidad de dicho impacto a través de permutación de datos, con el fin de observar potenciales alteraciones generadas en los resultados, de esta manera, el modelo genera un resultado confiable y útil.

El modelo se reevalúa en los datos permutados y la caída resultante en el AUC de entrenamiento se muestra en la tabla, normalizada a porcentajes.

De esta manera, se identificó la relación entre las variables y la distribución espacial, determinando la contribución porcentual de las mismas.

Tabla 4.

Contribución porcentual de las variables de entrada al modelo MaxEnt

Variable	Contribución porcentual		
variable	(%)		
Precipitación del mes más seco	37		
Estacionalidad de la temperatura	18.9		
Índice de privación relativa cuadriculada	7.7		
Precipitación del trimestre más frío	5.3		
Temperatura media del trimestre más seco	5.2		
Temperatura media anual	4.8		
Temperatura media del trimestre más frío	4.5		
Temperatura máxima del mes más cálido	3.7		
Precipitación del trimestre más seco	3.5		
Rango medio diurno	2.4		
Isotermalidad	1.9		
Precipitación anual	1.7		
Temperatura mínima del mes más frío	0.8		
Estacionalidad de la precipitación	0.6		
Precipitación del mes más húmedo	0.5		
Temperatura media del trimestre más húmedo	0.5		
Temperatura media del trimestre más cálido	0.5		
Estacionalidad de la temperatura	0.4		
Elevación	0.1		
Precipitación del trimestre más húmedo	0.1		
Rango anual de temperatura	0		

Elaborado por: La Autora, 2024

La Figura 7 muestra los resultados de la prueba de jackniffe de importancia de cada variable. En este sentido, es evidenciable que, las condiciones climáticas relacionadas con la precipitación y la temperatura, juegan un papel fundamental en la determinación de un área contaminada. Por tanto, las variables en conjunto aplicadas al modelo MaxEnt evidencian la importancia de la precipitación en relación a la contaminación presente en un área.

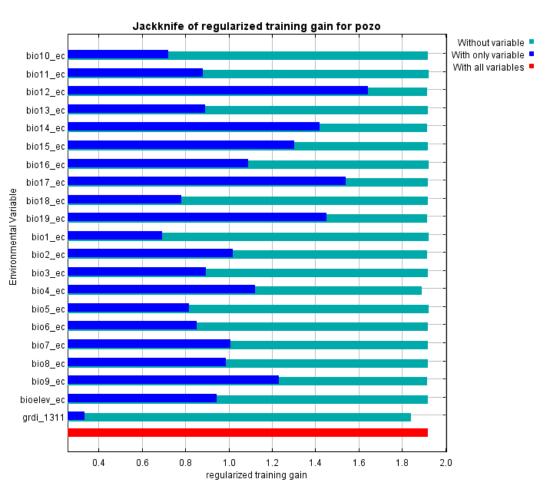


Figura 7.

Prueba de jackniffe para evaluación de las variables aplicadas

Elaborado por: La Autora, 2024

Por consiguiente, la

Figura 8 muestra el mapa de probabilidad que indica las áreas vulnerables a contaminación por pozos petroleros. Se observa que, las zonas con alta probabilidad se encuentran en el sector oeste de la parroquia, área donde se encuentra ubicado el barrio "La Prosperidad", del mismo modo, se contemplan dos ríos que atraviesan la parroquia, los cuales se ven afectados por la contaminación, siendo estos el río "Las Vegas" y el río "El Tambo".

A su vez, se evidencia que la concentración de pozos se encuentra en la zona sur, siendo esta una de los sectores mayormente afectados al igual que la sección oeste, donde se aprecia que la contaminación se distribuye de forma potencial hacia esta zona, cubriendo desde la vía Atahualpa hasta la vía Santa Elena.

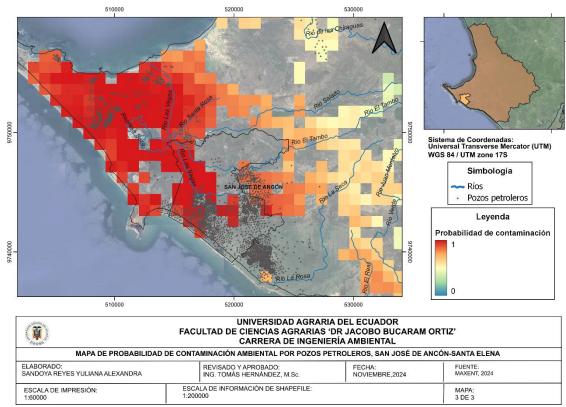


Figura 8.

Mapa de probabilidad de contaminación ambiental por pozos petroleros,
San José de Ancón-Santa Elena

Elaborado por: La Autora, 2024

4.3 Desarrollo de estrategias de gestión para áreas con alta vulnerabilidad a la contaminación por pozos petroleros

Introducción

La extracción de petróleo ha sido crucial para el crecimiento económico, sin embargo, representa una problemática importante para la naturaleza y la salud de los ecosistemas, así como la calidad de vida de las poblaciones. El presente plan de respuesta tiene el objetivo de reducir los impactos negativos de la polución ambiental generada por los pozos petroleros presentes en la parroquia San José de Ancón.

El área de estudio se posiciona con una elevada vulnerabilidad socioambiental frente a derrames de petróleo, de esta manera, se ve afectada por las condiciones ambientales y climáticas de la región, que facilitan la rápida dispersión de los compuestos químicos liberados. Por este motivo, es esencial

establecer medidas que reduzcan los impactos negativos en el entorno natural y brinde protección a las comunidades que dependen de estos ecosistemas.

Con el objetivo de aplicar un enfoque completo para establecer estrategias de manejo que posibiliten ejecutar soluciones en las zonas vulneradas. De la misma manera, se implementarán acciones anticipatorias y de rectificación que aseguren una reacción eficaz ante eventos imprevistos, preservando de este modo tanto el medio ambiente como la salud de la población.

Objetivo General

Establecer un plan de respuesta para reducir la contaminación ambiental en las zonas vulnerables de San José de Ancón, mediante estrategias y medidas específicas para la prevención de riesgos asociados a los impactos de pozos petroleros.

Alcance

La presente propuesta está dirigida a las comunidades locales, empresa que opera en el área y autoridades municipales de la parroquia San José de Ancón, quienes se encuentren en las zonas vulnerables a la contaminación ambiental causada por los pozos petroleros. Este plan abarca la implementación de estrategias y medidas antes, durante y después del derrame, enfocadas en la prevención, mitigación y manejo de riesgos asociados a la contaminación ambiental, así como en el bienestar de las personas expuestas a estas actividades.

Plan de respuesta

Medidas antes del derrame

Brigada de control de derrames

Objetivo

Establecer un equipo de control de derrames capacitado, para la intervención inmediata de incidentes de derrames de petróleo, inspeccionando el área afectada para la implementación de las labores necesarias de control y mitigación.

Alcance

Direccionado a la empresa que opera en el área, con el fin de constituir

un equipo de respuesta inmediata y propuesto en el Plan de Manejo Ambiental,

del mismo modo, se dirige a evaluar de manera periódica las zonas vulnerables

a derrames para mitigar riesgos.

Costo: \$75,000 - \$150,000 aprox.

Medida

Los sucesos relacionados a derrames de petróleo deberán ser atendidos

de carácter inmediato por el responsable asignado, con la acción de un equipo

o brigada de respuesta capacitado, responsable de evaluar e inspeccionar el

escenario afectado para controlar y mitigar las acciones necesarias. Este equipo

debe definirse en el Plan de Contingencias del Plan de Manejo Ambiental y

participar regularmente en capacitaciones y simulacros para asegurar su

preparación.

Equipos de control de derrames

Objetivo

Desarrollar un mecanismo de control de derrames, que contemple la

adquisición de equipos apropiados y su implementación en un programa de

prevención, manteniendo la documentación correspondiente y la ejecución de

informes regulares sobre la evaluación y efectividad del sistema de control de

derrames.

Alcance

Establecido para la empresa operadora de la zona, para proporcionar

medios apropiados para el control de derrames, acorde la normativa vigente lo

establezca.

Costo: \$11,000 - \$23,000 aprox.

Medida

Según lo establece el Art. 27 del Reglamento Ambiental de Actividades

Hidrocarburíferas, se debe disponer de mecanismos y equipos apropiados para

el control de derrames, incluidos en un programa de prevención el cual debe

estar contemplado en el Plan de Manejo Ambiental, así como mantener la

documentación correspondiente y un reporte periódico de la evaluación al

sistema de equipos de control.

Manejo y tratamiento de descargas líquidas

Objetivo

Manejar las descargas líquidas en las infraestructuras petroleras, garantizando el drenaje y separación eficiente de escorrentías, aguas grises, negras y residuales a través de la instalación de separadores agua-aceite o separadores API estratégicamente ubicados.

Alcance

Enfocado al personal de la operadora petrolera, para la instalación de sistemas de drenaje que traten de manera específica efluentes residuales, según el requerimiento legal competente.

Costo: \$60,000 - \$100,000 aprox.

Medida

En base a lo establecido en el Art. 29 del Reglamento Ambiental de Actividades Hidrocarburíferas, las instalaciones petroleras deben contar un sistema de drenaje que faculte el tratamiento específico y separado de aguas lluvias, escorrentías, aguas grises, negras y efluentes residuales, integrando separadores agua-aceite o separadores API ubicados de forma estratégica, así como tanques de recolección para tratar derrames y aguas contaminadas para controlar derrames en cada piso, consolidando asimismo un mantenimiento continuo de los canales de drenaje y los separadores para evitar la contaminación ambiental.

Para ello, el área de almacenamiento de descargas líquidas debe contar con cubetos de contención de derrames, y poseer una capacidad mínima de 110% de volumen del contenedor de mayor capacidad.

Sistema de contención de derrames

Objetivo

Implementar un sistema de contención de derrames que contenga detectores de fugas en los tanques de almacenamiento, así como evaluaciones de los cubetos de contención siguiendo las normas API o semejantes, para evitar la contaminación ambiental, asegurando un entorno seguro.

Alcance

Destinado a la empresa operadora para la implementación de sistemas

integrales de prevención con detectores de fugas en los tanques de

almacenamiento y prevenir la contaminación ambiental.

Costo: \$30,000 - \$60,000 aprox.

Medida

Establecer un sistema integral de prevención y control que contemple

detectores de fugas en los tanques de almacenamiento, del mismo modo,

realizar evaluaciones regulares de los tanques, diques y cubetos de contención

construidos conforme a normas API o equivalentes, además de garantizar que

las tuberías enterradas estén protegidas contra la corrosión y ubicadas a una

distancia mínima de 0.50 metros de otras canalizaciones, y que cada tanque

cuente con una tubería de ventilación instalada en áreas abiertas para prevenir

la acumulación de vapores y la contaminación del aire.

Medidas durante el derrame

Técnicas

Bermas de desviación

Objetivo

Disponer de barreras bajas de tierra, grava o sacos de arena en áreas

sensibles a derrames de petróleo, para redireccionar los hidrocarburos hacia

zonas seguras.

Alcance

La empresa responsable de las operaciones hidrocarburíferas en el área

le corresponde la instalación de barreras según los requerimientos y capacidad

acorde a la contención del derrame presentado.

Costo: \$18,000 - \$30,000 aprox.

Medida

Consiste en implementar barreras bajas compuestas por tierra, grava o

sacos de arena, permite la desviación de los derrames de hidrocarburos hacia

un punto de reposición o para proteger áreas sensibles, siendo esencialmente

útiles en terrenos con pendientes suaves a moderadas (Seguridad Minera,

2017). Para ello, se debe disponer un sitio seguro para almacenar los

hidrocarburos desviados, como una trampa de líquidos o un tanque de

emergencia.

Bermas de contención

Objetivo

Ubicar barreras de contención en las zonas de contingencia, disponiendo

materiales como grava o tierra, para contener de manera eficaz los derrames de

hidrocarburos garantizando la contención rápida y eficaz del material derramado,

reduciendo así los riesgos de expansión y daños adicionales.

Alcance

Es competencia de la empresa petrolera aplicar la presente medida en las

zonas de afectación para minimizar los impactos generados, realizando un

manejo seguro según lo requiera la contingencia.

Costo: \$1,000 - \$3,000 aprox.

Medida

Son depósitos plegables elaborado con materiales como grava y tierra

cuando se emplean de manera natural, mientras que, también se presentan en

PVC, siendo estas de mayor resistencia, de este modo, poseen una gran

capacidad y resistencia frente a hidrocarburos (Geosoluciones, 2024). Estas

pueden emplearse en las zonas de riesgo minimizando y conteniendo de manera

rápida, para reducir los riesgos generados por el derrame.

Zanjas de intercepción

Objetivo

Formar cauces de intercepción para separar la fuente del derrame y

restablecer el área afectada, certificando que el derrame sea controlado y

redirigido hacia un punto de intercepción segura para la minimización del impacto

ambiental.

Alcance

Contempla la gestión competente de la operadora hidrocarburífera, así

como el Gobierno Autónomo Descentralizado (GAD) de la zona de estudio, en la

verificación del establecimiento de la medida propuesta, implementando la

medida para mitigar la propagación de la contaminación.

Costo: \$15,000 - \$25,000 aprox.

Medida

Cuando el área se encuentra vulnerada por un derrame, es necesario, en

primer lugar, identificar la fuente, posteriormente aislar y recuperar la zona que

se afectó, para ello, se debe realiza una zanja o canal de la zona de afectación

hasta un punto de seguridad que permita el tratamiento de esta área (Seguridad

Minera, 2017). De este modo, una vez realizado este procedimiento, se aplica

una limpieza, consecutivamente la excavación en el suelo para rellenar el área

con tierra o sedimentos limpios.

Medidas después del derrame

Comunicación de situaciones de emergencia

Objetivo

Establecer un mecanismo de respuesta eficiente dirigido a la recuperación

y limpieza de las áreas afectadas, asegurando la implementación de las medidas

necesarias según la condición, para la protección del ecosistema local y la

comunidad.

Alcance

La entidad operadora debe asumir la ejecución de la medida, mientras

que la autoridad local debe dar seguimiento, así como la comunidad deben

informarse y colaborar en el proceso de remediación.

Costo: \$20,000 - \$40,000 aprox.

Medida

Es responsabilidad de la entidad que opera en el área, causante de la

contingencia, activar de manera inmediata el Plan de Contingencia, así como

implementar barreras físicas, contenedores y absorbentes, según sea necesario,

con el fin de contener y mitigar la contaminación, así como realizar limpiezas en

las zonas afectadas, este procedimiento así como la afectación debe ser

comunicada a la Autoridad Ambiental Competente y presentar la información

correspondiente a las medidas implementadas, asegurando una adecuada

gestión del daño ambiental.

Biorremediación

Objetivo

Ejecutar técnicas de remediación a través de microorganismos con el fin de desintegrar los componentes nocivos con el ecosistema y minimizar los efectos negativos en el medio.

Alcance

La empresa operadora del área debe encargarse de destinar métodos de biorremediación con microorganismos (bacterias, hongos) en las zonas vulnerables, que faciliten la descomposición de los compuestos tóxicos en el medio ambiente.

Costo: \$35,000 - \$40,000 aprox.

Medida

Consiste en emplear microorganismos como plantas, hongos, bacterias naturales o genéticamente modificadas con el fin de neutralizar sustancias nocivas, transformando en compuestos menos tóxicos y amigables con el ambiente y la salud humana (López et al., 2006). En base a ello, se debe emplear métodos de remediación según sea necesario en la zona afectada, aplicando fitorremediación, utilizando plantas que cumplen la función de degradar o volatilizar hidrocarburos, mientras que, la biorremediación se aplica mediante microorganismos autóctonos o alóctonos que facilitan la descomposición de los compuestos en el medio.

5. DISCUSIÓN

En la aplicación del modelo de máxima entropía MaxEnt, se determinó que actuó de manera eficiente, generando una curva de respuesta AUC de 0.947, por tanto, se identifica como un comportamiento sobresaliente en cuanto a la identificación de zonas con probabilidad de contaminación ambiental por la presencia de pozos petroleros, del mismo modo, este valor de AUC indica que el conjunto de variables empleadas es apropiado para la realización del presente estudio. Mientras que, la investigación realizada por Wang et al., (2022) emplearon variables naturales, socioeconómicas y de tráfico obteniendo un AUC de 0.981, en la identificación de áreas potencialmente contaminadas mediante MaxEnt para la industria petroquímica en China, presentando un buen rendimiento en la estimación, obteniendo áreas de baja, media y alta probabilidad de afectación.

De este modo, ambos estudios destacan la efectividad del modelo MaxEnt para la identificación de zonas con probabilidad de contaminación ambiental. Por otra parte, en base a los resultados obtenidos, se identifica una relación significativa con lo expresado por Mayorga y Reyes (2022), donde identificaron al Campo Ancón como una de las superficies más vulnerables a contaminación ambiental por pozos petroleros. En el presente análisis, la zona oeste de la parroquia San José de Ancón, donde se encuentran ríos como Las Vegas y el Tambo, son característicamente susceptibles a la contaminación ambiental. Esta simultaneidad plantea que, la interacción entre factores climáticos y la actividad petrolera es determinante en la vulnerabilidad ambiental, demostrando la necesidad de implementar estrategias de mitigación específicas en las áreas críticas.

Del mismo modo, el GAD San José de Ancón (2020) afirma en el Plan de Desarrollo y Ordenamiento Territorial como las actividades hidrocarburíferas han generado múltiples pasivos ambientales, causados por la falta de mantenimiento de las instalaciones y fallas técnicas de operación producidos por la empresa PACIFPETROL S.A, donde se estima cuenta con 162 pasivos aproximadamente en la zona de estudio.

A su vez, durante la ejecución del modelo MaxEnt se determinó la contribución porcentual de las variables aplicadas, obteniendo que, la variable

de precipitación del mes más seco aportó con el 37%, siendo esta la más significativa del modelo cuando se emplea de manera conjunta. De forma similar, en la investigación realizada por Kang et al. (2023) aplicaron MaxEnt para la identificación de áreas potenciales de contaminación del suelo derivadas de la industria minera, empleando variables de entrada bioclimáticas, socioeconómicas y biofísicas, estableciendo que, la precipitación media anual se presentó como una de las variables significativas para la determinación de zonas contaminadas aportando con un 3.9%, en conjunto con el PIB, la densidad de la población y el tipo de suelo.

Además, Abednego et al. (2022) modelaron la retención del derrame de combustible diésel en el suelo del delta del Níger, donde expresan que la intensidad de la precipitación es determinante en cuanto a la cantidad de contaminante que un área puede retener, de este modo, manifiestan que, a mayor precipitación, menor concentración de contaminación presentará el medio. En correspondencia con lo expuesto en el presente estudio, Ancón al presentarse como una zona con clima seco y escasa precipitación, escenario que favorece una acumulación significativa de contaminación, limitando la dispersión y reducción, convirtiéndose un área crítica para la contaminación ambiental asociada a los pozos petroleros.

De esta manera, la actividad petrolífera ejecutada en San José de Ancón manifiesta el desafío de establecer un desarrollo sostenible. Por ello, el presente estudio contribuye un elemento científico que permite dirigir esfuerzos hacia un manejo más responsable de los recursos naturales.

6. CONCLUSIONES Y RECOMENDACIONES

6.1 Conclusiones

Mediante la recopilación de distintas fuentes bibliográficas extraídas como artículos científicos, tesis e informes de vinculación con la comunidad, se obtuvo las coordenadas geográficas de los pozos petroleros presentes en la parroquia San José de Ancón. A través de la información adquirida, se observa que el área presenta una alta densidad de pozos, a su vez, mediante las fuentes investigadas, se identifica que las instalaciones se encuentran en deterioro. Por tanto, debido a las condiciones presentadas, la zona de estudio se posiciona como un área vulnerable a presentar eventos de contaminación ambiental.

Se aplicó MaxEnt, demostrando un rendimiento eficiente con un AUC de 0.947. Se obtuvo que, la precipitación anual actúa como la variable que provee mayor información, cuando se usa de forma aislada, mientras que, el índice de privación relativa si es omitida genera una pérdida significativa de información. Sin embargo, la variable que aporta más al modelo cuando se emplea de manera conjunta es la precipitación del mes más seco, con un 37%. De esta manera, se evidencia que, las variables relacionadas con las condiciones climáticas como la precipitación y temperatura son fundamentales para la identificación de zonas susceptibles a contaminación. Por último, las áreas de mayor vulnerabilidad se encuentran en la zona oeste de la parroquia, donde residen comunidades como "La Prosperidad" y fluyen ríos como "Las Vegas" y "El Tambo", las cuales son sensibles a la contaminación.

Se propuso estrategias de gestión para las zonas con alta vulnerabilidad a contaminación por pozos petroleros presentes en San José de Ancón, mediante un plan de respuesta en el área de estudio con fines preventivos, de manejo y correctivos, el cual establece medidas que mitiguen y promuevan el uso adecuado de los recursos naturales y fomenta el bienestar de las comunidades del área.

6.2 Recomendaciones

Se sugiere llevar a cabo investigaciones adicionales relacionadas a la distribución de los pozos petroleros en la parroquia San José de Ancón. A su vez, se requiere que estas exploraciones incluyan la recopilación y revisión de

las coordenadas geográficas de los pozos petroleros, así como información sobre el estado del pozo, año de operación y condiciones de la infraestructura. De manera que, el análisis permita detectar signos de contaminación ambiental, como posibles vertidos de sustancias petrolíferas y su efecto. Esta información es fundamental para comprender la gravedad del problema y diseñar estrategias eficaces de restauración ambiental.

Se recomienda implementar un sistema de monitoreo ambiental continuo en las zonas identificadas como vulnerables del área de estudio. En base al análisis realizado con MaxEnt, se propone emplear mayor número de variables para identificar el rendimiento del modelo. A su vez, se sugiere llevar a cabo investigaciones que consideren como las condiciones biofísicas afectan la vulnerabilidad a la contaminación. Esta comprensión podría facilitar el diseño de intervenciones más eficaces, de esta manera, se aportará a una mejor percepción de los riesgos ambientales y fortalecerá la resiliencia de las comunidades afectadas.

Se propone integrar las estrategias planteadas con la implementación de un sistema de monitoreo continuo que evalúe la efectividad de las medidas propuestas en tiempo real. Mediante ello, se debe abarcar indicadores de desempeño ambiental y social, garantizando que las acciones se ajusten según las necesidades del área de estudio. Asimismo, es esencial emprender programas de educación ambiental y participación comunitaria que fortalezcan el compromiso local en la protección y manejo de los recursos naturales y fomentar la corresponsabilidad entre las empresas, las autoridades y la población en la gestión sostenible del área.

BIBLIOGRAFÍA

Abad Auquilla, A. (2024). El cambio de uso de suelo y la utilidad del paisaje periurbano de la cuenca del río Guayllabamba en Ecuador [Tesis de Grado, Universidad Técnica de Cotopaxi]. http://repositorio.utc.edu.ec/bitstream/27000/11650/1/PC-003101.pdf Abednego, G., Akoba, B., Uyoh, F., Nwinuka, B., Pepple, M., & Akpan, P. (2022). Modeling the Retention of Diesel Oil Spill in Bori-Ogoni Soil. International Journal of Engineering Research and Applications, 12(6), 10-18. https://doi.org/10.9790/9622-1206031018

Ayauca, A. (2023). Estudio sobre los Impactos de la Explotación Petrolera en el campo Lago Agrio Bloque 56 y el uso de los skimmers como una solución en los derrames petroleros [Tesis de Grado, Escuela Superior Politécnica del Litoral]. https://dspace.espol.edu.ec/retrieve/3d9a38da-f39e-44bb-9b7b-

ead5267ded4c/T-70782%20AYAUCA.pdf

Azqueta, D., y Delacámara, G. (2008). El costo ecológico de la extracción de petróleo: una simulación. *Revista de La CEPAL*, 94. https://doi.org/https://repositorio.cepal.org/server/api/core/bitstreams/45ac5443-16ea-470a-8c4a-bb0775b19103/content

Ballardin, S., Belladona, R., De Vargas, T., Bosco, V. D., Bortolin, T. A., y Roehe Reginato, P. A. (2024). MaxEnt machine learning model predicts high groundwater potential areas in a fractured volcanic aquifer system. *Journal of South American Earth Sciences*, 135, 104794. https://doi.org/10.1016/j.jsames.2024.104794

Biomorgi, J., Hernández, S., Marín, J., Rodríguez, E., Lara, M., y Viloria, A. (2012). Evaluación de los mecanismos de corrosión presentes en las líneas de producción de crudo y gas ubicadas en el noreste de Venezuela. *Revista Latinoamericana de Metalurgia y Materiales*, 32(1), 96–106. https://doi.org/https://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0255-69522012000100012#:~:text=El%20fen%C3%B3meno%20de%20corrosi%C3%B3n%20es,produciendo%20diferentes%20formas%20de%20corrosi%C3%B3

Camacho, P. (2022). Aplicación de la Fitorremediación en áreas afectadas por contaminantes en Ecuador [Tesis de Grado, Universidad Estatal Península de

Santa Elena]. https://repositorio.upse.edu.ec/bitstream/46000/8728/1/UPSE-TIA-2022-0046.pdf

Center for International Earth Science Information Network [CIESIN]. (2022). Global Gridded Relative Deprivation Index (GRDI), v1: Poverty Mapping. Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/3xxe-ap97

Chen, J., Zhang, W., Wan, Z., Li, S., Huang, T., y Fei, Y. (2019). Oil spills from global tankers: Status review and future governance. *Journal of Cleaner Production*, 227, 20–32. https://doi.org/10.1016/j.jclepro.2019.04.020

Cimec. (2023, June 30). *Método Exploratorio Investigación*. https://www.cimec.es/metodo-explotario-investigacion/

Código Orgánico del Ambiente [COA]. Registro Oficial Suplemento 983 de 12-abr.-2017. (Ecuador)

Constitución de la República del Ecuador. (2008). [Constitución]. Registro Oficial 449 de 20-oct-2008. (Ecuador).

Delacámara, G., y Azqueta, D. (2008). El costo ecológico de la extracción de petróleo: Una simulación. La CEPAL, 94, Revista de 59–74. https://doi.org/https://www.academia.edu/57370872/EI_Costo_Ecol%C3%B3gic o_De_La_Extracci%C3%B3n_De_Petr%C3%B3leo_Una_Simulaci%C3%B3n Duoc, B. (2024). Biblioteca: Investigación Aplicada, Innovación y Transferencia: Definición y propósito de la Investigación Aplicada. Biblioteca at Duoc UC. https://bibliotecas.duoc.cl/investigacion-aplicada/definicion-propositoinvestigacion-aplicada

Escandón Panchana, P. C. (2019). Delimitación de riesgos de la industria hidrocarburífera en el sector San Raymundo del cantón Salinas, provincia de Santa Elena. *Revista Científica y Tecnológica UPSE*, *6*(1), 27–33. https://doi.org/10.26423/rctu.v6i1.419

Escarcega, J. (2023). ¿Qué es la investigación de campo? Berumen. https://berumen.com.mx/investigacion-de-campo-que-es-y-por-que-hacerla/ Espinel, J. (2017). Plan de Contingencia para derrames de hidrocarburos transportados por líneas de flujo en el Campo Gustavo Galindo [Tesis de Pregrado, Escuela Superior Politécnica del Litoral]. https://www.fict.espol.edu.ec/sites/fict.espol.edu.ec/files/ESPINEL.pdf

215-225.

Fick, S. E., y Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. *International Journal of Climatology*, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

Fitzgerald, T., Kuwayama, Y., Olmstead, S., y Thompson, A. (2020). Dynamic impacts of U.S. energy development on agricultural land use. *Energy Policy*, *137*, 111163. https://doi.org/10.1016/j.enpol.2019.111163

Flores, D., y Fernández, D. (2017). Los sistemas de información geográfica. Una revisión. *Revista Facultad Ciencias Agropecuarias FAGROPEC*, *9*(1). https://doi.org/https://editorial.uniamazonia.edu.co/index.php/fagropec/article/view/347/337

GAD San José de Ancón. (2020). *Plan de Desarrollo y Ordenamiento Territorial* 2020 Parroquia San José de Ancón. [Archivo PDF]. https://gadpancon.gob.ec/pdot/1/

Gallardo, C. (2022). Radiografía de la degradación e injusticias ambientales y sociales en contextos petroleros: la Península de Santa Elena en el Ecuador [Tesis de Posgrado, Facultad Latinoamericana de Ciencias Sociales]. https://repositorio.flacsoandes.edu.ec/bitstream/10469/18177/2/TFLACSO-2022CGGC.pdf

Guelmes Valdés, E. L., y Nieto Almeida, L. E. (2015). Algunas reflexiones sobre el enfoque mixto de la investigación pedagógica en el contexto cubano. *Revista Universidad y Sociedad*, 7(1), 23–29. https://doi.org/http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2218-36202015000100004

Guerrero, J. (2014). Atención de derrames de petróleo crudo en el Golfo de México. [Tesis de Pregrado, Universidad Nacional Autónoma de México]. http://www.ptolomeo.unam.mx:8080/xmlui/bitstream/handle/132.248.52.100/370 7/tesis.pdf?sequence=1

Heras, I., Arana, G., Espí, M., Díaz, A., y Molina, J. (2008). *Gestión de la calidad y competitividad de las empresas de la CAPV.* Deustro. http://www.deusto-publicaciones.es/ud/openaccess/orkestra/pdfs_orkestra/orkestra04.pdf Herrera, B., y Quishpe, J. (2022). Análisis Ético de la Contaminación Ambiental en las Petroleras del Ecuador. *Revista Observatorio de Las Ciencias Sociales En*

3(3),

Iberoamérica,

https://doi.org/https://www.eumed.net/es/revistas/ocsi/ocsi-enero-22/analisis-contaminacion

Herrera-Franco, G., Escandón-Panchana, P., Montalván, F. J., y Velastegui-Montoya, A. (2022). CLUE-S model based on GIS applied to management strategies of territory with oil wells—Case study: Santa Elena, Ecuador. *Geography and Sustainability*, *3*(4), 366–378. https://doi.org/10.1016/j.geosus.2022.11.001

Jafarinejad, S. (2017). Introduction to the petroleum industry. In *Petroleum Waste Treatment and Pollution Control* (pp. 1–17). Elsevier. http://dx.doi.org/10.1016/b978-0-12-809243-9.00001-8

Kang, J., Liu, M., Qu, M., Guang, X., Chen, J., Zhao, Y., y Huang, B. (2023). Identifying the potential soil pollution areas derived from the metal mining industry in China using MaxEnt with mine reserve scales (MaxEnt_MRS). *Environmental Pollution*, 329, 121687. https://doi.org/10.1016/j.envpol.2023.121687

Ley de Hidrocarburos. (2023). Ministerio de Energía y Recursos Naturales No Renovables. https://www.geoenergia.gob.ec/wp-content/uploads/downloads/2023/07/17_Ley_Hidrocarburos.pdf

Li, H., Wang, Q., Li, M., Zang, X., y Wang, Y. (2024). Identification of urban waterlogging indicators and risk assessment based on MaxEnt Model: A case study of Tianjin Downtown. *Ecological Indicators*, *158*(1), 111354. https://doi.org/10.1016/j.ecolind.2023.111354

Loaiza, C., y Roque, J. (2016). Revalidación taxonómica y distribución potencial de Armatocereus brevispinus Madsen (Cactaceae). *Revista Peruana de Biología*, *23*(1), 35–41. https://doi.org/10.15381/rpb.v23i1.11831

López, A., Calle, D., y Molina, A. (2017). Análisis del uso de las herramientas de gestión ambiental en las empresas comerciales del cantón Morona. *Revista Killkana* Sociales, 1(3), 45–52. https://doi.org/https://killkana.ucacue.edu.ec/index.php/killkana_social/article/vie w/62/76

Maldonado Chávez, E., Rivera Cruz, M., Izquierdo Reyes, F., y Palma López, D. (2010). Efectos de rizosfera, microorganismos y fertilización en la biorremediación y fitorremediación de suelos con petróleos crudo nuevo e intemperizado. *Universidad y Ciencia*, 26(2), 121–136. https://doi.org/http://www.redalyc.org/articulo.oa?id=15416232001

Maurice, L., López, F., Becerra, S., Jamhoury, H., Le Menach, K., Dévier, M.-H., Budzinski, H., Prunier, J., Juteau-Martineau, G., Ochoa-Herrera, V., Quiroga, D., y Schreck, E. (2019). Drinking water quality in areas impacted by oil activities in Ecuador: Associated health risks and social perception of human exposure. *Science of The Total Environment*, 690(1), 1203–1217. https://doi.org/10.1016/j.scitotenv.2019.07.089

Mayorga-Mayorga, H. S., y Reyes-Bueno, F. (2022). Análisis de Derrames de Petróleo en el Campo Ancón Mediante Sistemas de Información Geográfica. *Revista Politécnica*, *49*(1), 53–60. https://doi.org/10.33333/rp.vol49n1.05 Mercado, B. (2022). *Evaluación de la pluma de contaminación en caso de un derrame en los tanques de almacenamiento de crudo de petróleo de la refinería "La Libertad"* [Tesis de Grado, Universidad Agraria del Ecuador]. https://cia.uagraria.edu.ec/Archivos/MERCADO%20ORTIZ%20BORIS%20ALE XANDER.pdf

Muñoz, R., y Tomalá, J. (2013). Elaboración de un manual de control de las operaciones hidrocarburíferas optimizando las técnicas de fiscalización a ser usadas por funcionarios de la ARCH Península [Tesis de Grado, Universidad Estatal Península de Santa Elena]. https://repositorio.upse.edu.ec/bitstream/46000/1617/1/ELABORACI%C3%93N%20DE%20UN%20MANUAL%20DE%20CONTROL%20DE%20LAS%20OPER ACIONES%20HIDROCARBURIFERAS%20OPTIMIZANDO%20LAS%20T%C3%89CNICAS%20DE%20FISCALIZACI%C3%93N%20A%20SER%20USADAS%20POR%20FUNCIONARIOS%20DE%20LA%20ARCH%20PEN%C3%8DNSULA.pdf

Naciones Unidas (2018), La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe (LC/G.2681-P/Rev.3), Santiago.

Navas, P. (2024). Distribución actual y futura de la (Thunbergia alata Sims) en la región Interandina del Ecuador en el año 2023 [Tesis de Grado, Universidad Técnica de Cotopaxi]. http://repositorio.utc.edu.ec/bitstream/27000/11650/1/PC-003101.pdf

Ngarega, B. K., Masocha, V. F., y Schneider, H. (2021). Forecasting the effects of bioclimatic characteristics and climate change on the potential distribution of

Colophospermum mopane in southern Africa using Maximum Entropy (Maxent). *Ecological Informatics*, *65*, 101419. https://doi.org/10.1016/j.ecoinf.2021.101419 Ochoa, H. (2021). *Investigación experimental y no experimental* [Tesis de Posgrado, Instituto de Estudios Superiores de Chiapas Universidad Salazar]. https://salazarvirtual.sistemaeducativosalazar.mx/assets/6102aa6750ff4/tareas/9252cbda265c7f789a59cbc8557cc217investigacion%20experiemmntal.pdf Organización Marítima Internacional. (1990). *Convenio Internacional sobre Cooperación, Preparación y Lucha contra la Contaminación por Hidrocarburos (OPRC)*.

https://www.miteco.gob.es/content/dam/miteco/es/costas/temas/proteccion-medio-marino/ConvenioOPRC_tcm30-157142.pdf

Ormaza, K., y Sarmiento, Y. (2020). Evaluación de riesgos naturales, antrópicos y propuesta de un plan de contingencia en la Unidad Educativa "Esperanza eterna" de la ciudad de Puyo [Tesis de Grado, Universidad Estatal Amazónica]. https://repositorio.uea.edu.ec/xmlui/bitstream/handle/123456789/839/T.AMB.B. UEA.%20%203278.pdf?sequence=1&isAllowed=y

Oscar, O., Ize, I., y Gavilán, A. (2003). La restauración de suelos contaminados con hidrocarburos en México. *Gaceta Ecológica*, 69, 83–92. https://doi.org/https://www.redalyc.org/pdf/539/53906906.pdf

Palacios Anzules, Í. del C., y Moreno Castro, D. W. (2022). Contaminación ambiental. *RECIMUNDO*, *6*(2), 93–103. https://doi.org/10.26820/recimundo/6.(2).abr.2022.93-103

PETROECUADOR. (2013). El petróleo: su formación, desarrollo y mercado. In *El petróleo en el Ecuador: La nueva era petrolera* (pp. 13–33). https://www.eppetroecuador.ec/wp-content/uploads/downloads/2015/03/El-

Petr%C3%B3leo-en-el-Ecuador-La-Nueva-Era.pdf

Phillips, S. J., Anderson, R. P., y Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. *Ecological Modelling*, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Pichina, R., y Vera, M. (2024). Evaluación del rendimiento y la eficiencia de las operaciones realizadas durante el proceso de perforación de un pozo direccional en el Campo Parahuacu del Oriente Ecuatoriano [Tesis de Grado, Universidad Estatal Península de Santa Elena].

https://repositorio.upse.edu.ec/bitstream/46000/10796/1/UPSE-TIP-2024-0014.pdf

Pinedo, A., Aguilera, M., Alvarado, J. D., Ávila, V., y Sánchez, O. (2023). Uso de microorganismos autóctonos para la recuperación de suelos contaminados con derivados de petróleo. *Ciencia Del Suelo*, *3*(1), 287–291. https://doi.org/https://www.researchgate.net/profile/David-Palma-

7/publication/378823774_Hacia_un_conocimiento_global_y_multidisciplinario_d el_recurso_suelo_Division_III_Uso_y_manejo_del_suelo/links/65eb3e099ab2af 0ef897f9ae/Hacia-un-conocimiento-global-y-multidisciplinario-del-recurso-suelo-Division-III-Uso-y-manejo-del-suelo.pdf#page=287

Ministerio de Energía y Recursos Naturales No Renovables del Ecuador. (2021). *Reglamento de Operaciones Hidrocarburíferas*. Registro Oficial Suplemento 479 de 06-jul.-2021.

Seguridad Minera. (2017). *Derrame de hidrocarburos: Técnicas para su control y contención*. Revista Seguridad Minera. https://revistaseguridadminera.com/emergencias/derrame-de-hidrocarburos-tecnicas-para-su-control-y-contencion/

Shen, T., Yu, H., y Wang, Y.-Z. (2021). Assessing the impacts of climate change and habitat suitability on the distribution and quality of medicinal plant using multiple information integration: Take Gentiana rigescens as an example. *Ecological Indicators*, 123(1), 107376. https://doi.org/10.1016/j.ecolind.2021.107376

Suarez, R. (2013). *Guía de métodos de biorremediación para la recuperación de suelos contaminados por hidrocarburos* [Tesis de Posgrado, Universidad Libre]. https://repository.unilibre.edu.co/bitstream/handle/10901/10607/TRABAJO%20 FINAL%20cd.pdf

Téllez, J. M. (2007). Absorción de petróleo crudo, diésel y aceite automotriz gastado por residuos lignocelulósicos y su aplicación como sistema de disposición de hidrocarburos [Tesis de Posgrado, Tecnológico de Monterrey]. https://repositorio.tec.mx/handle/11285/628475

Valle, Augusta, Manrique, L., y Revilla, D. (2022). La Investigación descriptiva con enfoque cualitativo en educación. *Pontificia Universidad Católica Del Perú*, 1,

https://doi.org/https://repositorio.pucp.edu.pe/index/handle/123456789/184559

Velásquez Arias, J. A. (2017). Contaminación de suelos y aguas por hidrocarburos en Colombia. Análisis de la fitorremediación como estrategia biotecnológica de recuperación. *Revista de Investigación Agraria y Ambiental*, 8(1), 151–167. https://doi.org/10.22490/21456453.1846

Velasteguí, L., y Veloz, C. (2007). Elaboración de un Plan de Contingencias para las operaciones hidrocarburíferas desarrolladas en el Campo Gustavo Galindo Velasco [Tesis de Grado, Escuela Politécnica Nacional]. https://bibdigital.epn.edu.ec/bitstream/15000/133/1/CD-0539.pdf

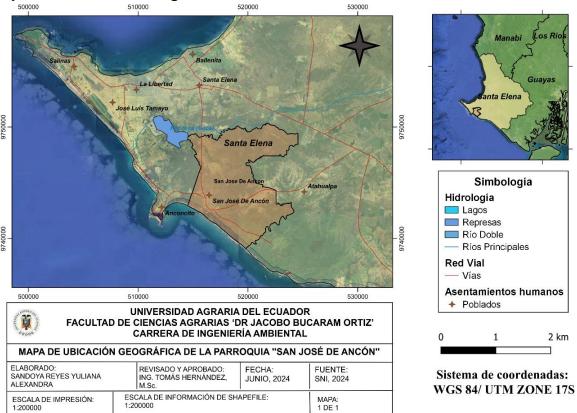
Vivero, L., y Sánchez, B. (2018). *La Investigación Documental: Características y Algunas Herramientas*. Unidad de Apoyo Para El Aprendizaje. https://repositorio-uapa.cuaieed.unam.mx/repositorio/moodle/pluginfile.php/1516/mod_resource/c ontent/3/contenido/index.html

Vizuete, R., Delgado, A., y Lascano, A. (2019). Modelo de gestión medioambiental que permita optimizar el suelo contaminado del Campo Sacha. *Revista de Investigación Talentos*, *6*(1), 12–21. https://doi.org/https://talentos.ueb.edu.ec/index.php/talentos/article/view/127/204

Wang, M., Chen, H., y Lei, M. (2022). Identifying potentially contaminated areas with MaxEnt model for petrochemical industry in China. *Environmental Science and Pollution Research*, 29(36), 54421–54431. https://doi.org/10.1007/s11356-022-19697-8

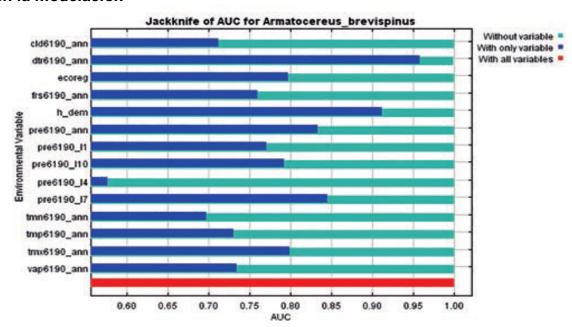
Xu, G., y Xu, Y. (2016). *GPS: Theory, algorithms and applications* (3rd ed.). Springer. https://doi.org/10.1007/978-3-662-50367-6

Zambrano, F. (2015). Propuesta de un Plan de Marketing para empresas que se dedican a la actividad petrolera [Tesis de Grado, Universidad Laica "Eloy Alfaro" de Manabí].


https://repositorio.uleam.edu.ec/bitstream/123456789/195/1/ULEAM-PBL-0010.pdf

Zamora, A. C., y Ramos, J. (2010). Las actividades de la industria petrolera y el marco ambiental legal en Venezuela. Una visión crítica de su efectividad. *Revista Geográfica Venezolana*, 51(1), 115–144. https://doi.org/http://www.redalyc.org/articulo.oa?id=347730384008

ANEXOS


Figura 9.

Mapa de Ubicación Geográfica del área de estudio "San José de Ancón"

Elaborado por: La Autora, 2024

Figura 10.
Test de jackknife realizado para determinar la importancia de las variables en la modelación

Fuente: Loaiza y Roque, 2016

Tabla 5. Variables bioclimáticas para modelación en MaxEnt

Código	Variable	Unidad			
Bio1	Temperatura media anual	°C			
Bio2	Rango de temperaturas diurnas	°C			
Bio3	Isotermalidad	%			
Bio4	Bio4 Estacionalidad en la temporada				
Bio5	Temperatura máxima del mes más cálido	°C			
Bio6	Temperatura mínima del mes más frío	°C			
Bio7	Rango anual de temperatura	°C			
Bio8	Temperatura media del trimestre más lluvioso	°C			
Bio9	Temperatura media del trimestre más seco	°C			
Bio10	Temperatura media del trimestre más cálido	°C			
Bio11	Temperatura media del trimestre más frío	°C			
Bio12	Precipitación anual	mm			
Bio13	Precipitación del mes más lluvioso	mm			
Bio14	Precipitación del mes más seco	mm			
Bio15	Estacionalidad en la precipitación	Coeficiente de Variación			
Bio16	Precipitación del trimestre más lluvioso	mm			
Bio17	Precipitación del trimestre más seco	mm			
Bio18	Precipitación del trimestre más cálido	mm			
Bio19	Precipitación del trimestre más frío	mm			
Elev	Elevación				

Nota: La presente tabla expone 19 las variables bioclimáticas obtenidas de WorldClim que se emplearán para ejecutar el modelo de máxima entropía. Elaborado por: La Autora, 2024

76

Sensitivity vs. 1 - Specificity for pozo

Training data (AUC = 0.947) Random Prediction (AUC = 0.5)

Figura 11.

Curva ROC correspondiente al rendimiento del modelo

Elaborado por: La Autora, 2024

0.3

0.5

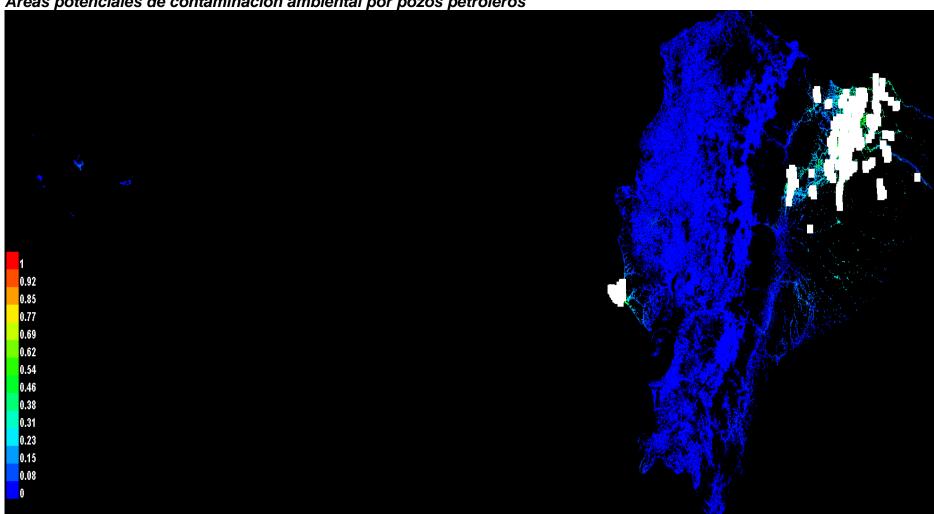
1 - Specificity (Fractional Predicted Area)

0.6

0.7

8.0

0.9


1.0

0.2

0.1

0.0

Figura 12. Áreas potenciales de contaminación ambiental por pozos petroleros

Elaborado por: La Autora, 2024

APÉNDICE

Apéndice N° 1.

Listado de coordenadas UTM de pozos petroleros

N°	Pozo	Coordenadas	Coordenadas	Empresa de
	F 020	X	Υ	operación
1	POZO ANCON 01	517410.126	9743167.01	PACIFPETROL
2	POZO ANCON 04A	516098.137	9743907.01	PACIFPETROL
3	POZO ANCON 04B	516032.138	9743429.01	PACIFPETROL
4	POZO ANCON 04C	516032.138	9743429.01	PACIFPETROL
5	POZO ANCON 05	516075.137	9743399.01	PACIFPETROL
6	POZO ANCON 06	515437.143	9743973.01	PACIFPETROL
7	POZO ANCON 07	518028.121	9743280.01	PACIFPETROL
8	POZO ANCON 08	514748.148	9743194.01	PACIFPETROL
9	POZO ANCON 09	514743.148	9743208.01	PACIFPETROL
10	POZO ANCON 109	517190.128	9742058.02	PACIFPETROL
11	POZO ANCON 113	517529.125	9742716.02	PACIFPETROL
12	POZO ANCON 1150	519578.108	9742472.02	PACIFPETROL
13	POZO ANCON 1189	517953.122	9744029.01	PACIFPETROL
14	POZO ANCON 119	520846.097	9740427.04	PACIFPETROL
15	POZO ANCON 1203	521030.095	9741981.02	PACIFPETROL
16	POZO ANCON 1232	521378.093	9744552	PACIFPETROL
17	POZO ANCON 1236	521202.094	9744308	PACIFPETROL
18	POZO ANCON 1237	518402.117	9740483.04	PACIFPETROL
19	POZO ANCON 1246	518595.116	9740213.04	PACIFPETROL
20	POZO ANCON 1268	521328.093	9742721.02	PACIFPETROL
21	POZO ANCON 1289	523099.078	9742027.02	PACIFPETROL
22	POZO ANCON 1385	519743.106	9741637.03	PACIFPETROL
23	POZO ANCON 1418	517596.124	9743230.01	PACIFPETROL
24	POZO ANCON 1435	517686.124	9744376	PACIFPETROL
25	POZO ANCON 1437	517881.122	9744323	PACIFPETROL
26	POZO ANCON 1440	516859.131	9743733.01	PACIFPETROL
27	POZO ANCON 1466	518493.117	9743947.01	PACIFPETROL
28	POZO ANCON 1469	518513.117	9743854.01	PACIFPETROL

N°	Pozo	Coordenadas X	Coordenadas Y	Empresa de operación
29	POZO ANCON 151	517488.125	9741746.02	PACIFPETROL
30	POZO ANCON 1521	521575.091	9740738.03	PACIFPETROL
31	POZO ANCON 1543	521052.095	9740832.03	PACIFPETROL
32	POZO ANCON 1565	521605.091	9743622.01	PACIFPETROL
33	POZO ANCON 1567	521888.088	9743523.01	PACIFPETROL
34	POZO ANCON 1570	521792.089	9743557.01	PACIFPETROL
35	POZO ANCON 1575	521642.091	9743442.01	PACIFPETROL
36	POZO ANCON 1632	522170.086	9743868.01	PACIFPETROL
37	POZO ANCON 1638	521999.088	9743860.01	PACIFPETROL
38	POZO ANCON 1694	520910.096	9740505.03	PACIFPETROL
39	POZO ANCON 1719	520416.101	9743251.01	PACIFPETROL
40	POZO ANCON 1724	521548.091	9742043.02	PACIFPETROL
41	POZO ANCON 1732	519476.109	9743367.01	PACIFPETROL
42	POZO ANCON 1741	522193.086	9743509.01	PACIFPETROL
43	POZO ANCON 1750	520886.096	9741085.03	PACIFPETROL
44	POZO ANCON 1761	520278.101	9740080.04	PACIFPETROL
45	POZO ANCON 1810	521717.089	9741187.03	PACIFPETROL
46	POZO ANCON 187	517621.124	9742369.02	PACIFPETROL
47	POZO ANCON 192	517894.122	9742380.02	PACIFPETROL
48	POZO ANCON 197	517875.122	9742285.02	PACIFPETROL
49	POZO ANCON 1976	519042.112	9741679.03	PACIFPETROL
50	POZO ANCON 198	518018.121	9742268.02	PACIFPETROL
51	POZO ANCON 1995	518841.115	9747561.98	PACIFPETROL
52	POZO ANCON 2016	521990.087	9742071.02	PACIFPETROL
53	POZO ANCON 2017	521588.091	9741590.03	PACIFPETROL
54	POZO ANCON 205	518276.118	9741335.03	PACIFPETROL
55	POZO ANCON 212	517392.126	9742031.02	PACIFPETROL
56	POZO ANCON 22	515086.146	9743522.01	PACIFPETROL
57	POZO ANCON 224	518383.118	9741430.03	PACIFPETROL
58	POZO ANCON 248	517887.122	9741913.02	PACIFPETROL
59	POZO ANCON 271	518405.117	9741147.03	PACIFPETROL
60	POZO ANCON 281	518437.117	9742009.02	PACIFPETROL

N°	Pozo	Coordenadas X	Coordenadas Y	Empresa de operación	N°	Pozo	Coordenadas X	Coordenadas Y	Empresa de operación
61	POZO ANCON 292	518625.116	9741873.02	PACIFPETROL	93	POZO ANCON 430	517089.129	9744752	PACIFPETROL
62	POZO ANCON 295	518439.117	9741889.02	PACIFPETROL	94	POZO ANCON 431	520136.103	9742819.02	PACIFPETROL
63	POZO ANCON 296	518127.12	9741768.02	PACIFPETROL	95	POZO ANCON 432	516710.132	9744905	PACIFPETROL
64	POZO ANCON 305	519843.105	9742114.02	PACIFPETROL	96	POZO ANCON 433	521716.09	9743492.01	PACIFPETROL
65	POZO ANCON 306	518014.121	9741805.02	PACIFPETROL	97	POZO ANCON 434	517246.127	9741524.03	PACIFPETROL
66	POZO ANCON 310	518961.113	9743800.01	PACIFPETROL	98	POZO ANCON 436	520580.099	9742650.02	PACIFPETROL
67	POZO ANCON 32	516486.134	9742359.02	PACIFPETROL	99	POZO ANCON 437	516106.137	9742704.02	PACIFPETROL
68	POZO ANCON 325	518399.118	9742474.02	PACIFPETROL	100	POZO ANCON 438	518666.115	9742185.02	PACIFPETROL
69	POZO ANCON 330	521057.095	9742567.02	PACIFPETROL	101	POZO ANCON 439	521879.089	9744447	PACIFPETROL
70	POZO ANCON 334	518850.114	9741668.03	PACIFPETROL	102	POZO ANCON 44	516578.133	9743380.01	PACIFPETROL
71	POZO ANCON 365	519405.109	9741776.02	PACIFPETROL	103	POZO ANCON 440	521991.088	9744316	PACIFPETROL
72	POZO ANCON 377	521167.094	9742447.02	PACIFPETROL	104	POZO ANCON 441	521823.089	9744284	PACIFPETROL
73	POZO ANCON 393	519970.104	9742723.02	PACIFPETROL	105	POZO ANCON 442	520894.097	9744939	PACIFPETROL
74	POZO ANCON 410	522253.086	9744321	PACIFPETROL	106	POZO ANCON 443	520574.099	9742170.02	PACIFPETROL
75	POZO ANCON 414	522032.087	9744123	PACIFPETROL	107	POZO ANCON 445	522068.087	9744382	PACIFPETROL
76	POZO ANCON 415	517270.127	9743040.01	PACIFPETROL	108	POZO ANCON 446	519307.11	9743188.01	PACIFPETROL
77	POZO ANCON 416	522032.087	9744123	PACIFPETROL	109	POZO ANCON 447	522015.088	9744221	PACIFPETROL
78	POZO ANCON 417	520709.098	9742609.02	PACIFPETROL	110	POZO ANCON 448	521295.093	9743178.01	PACIFPETROL
79	POZO ANCON 418	522421.084	9744354	PACIFPETROL	111	POZO ANCON 449	521494.092	9744389	PACIFPETROL
80	POZO ANCON 419	521373.092	9741073.03	PACIFPETROL	112	POZO ANCON 45	515947.138	9742454.02	PACIFPETROL
81	POZO ANCON 42	516321.135	9743178.01	PACIFPETROL	113	POZO ANCON 450	521529.092	9744015	PACIFPETROL
82	POZO ANCON 420	519709.107	9742971.01	PACIFPETROL	114	POZO ANCON 452	517929.121	9741304.03	PACIFPETROL
83	POZO ANCON 421	521209.094	9743050.01	PACIFPETROL	115	POZO ANCON 453	521524.092	9744246	PACIFPETROL
84	POZO ANCON 422	520181.103	9742432.02	PACIFPETROL	116	POZO ANCON 454	521697.09	9744050	PACIFPETROL
85	POZO ANCON 423	522209.085	9741701.02	PACIFPETROL	117	POZO ANCON 455	521868.089	9744084	PACIFPETROL
86	POZO ANCON 424	520036.104	9743191.01	PACIFPETROL	118	POZO ANCON 456	521978.088	9743960.01	PACIFPETROL
87	POZO ANCON 425	520432.101	9743048.01	PACIFPETROL	119	POZO ANCON 458	518846.114	9743829.01	PACIFPETROL
88	POZO ANCON 426	520019.104	9744159	PACIFPETROL	120	POZO ANCON 459	519639.107	9743913.01	PACIFPETROL
89	POZO ANCON 427	522451.084	9742823.01	PACIFPETROL	121	POZO ANCON 460	521645.091	9743891.01	PACIFPETROL
90	POZO ANCON 428	520636.099	9742541.02	PACIFPETROL	122	POZO ANCON 461	518933.113	9742934.01	PACIFPETROL
91	POZO ANCON 429	520010.104	9743683.01	PACIFPETROL	123	POZO ANCON 462	520884.097	9743354.01	PACIFPETROL
92	POZO ANCON 43	516572.133	9743212.01	PACIFPETROL	124	POZO ANCON 463	521579.091	9744408	PACIFPETROL

N°	Pozo	Coordenadas X	Coordenadas Y	Empresa de operación	N°	Pozo	Coordenadas X	Coordenadas Y	Empresa de operación
125	POZO ANCON 465	519307.11	9743188.01	PACIFPETROL	157	POZO ANCON 494	520910.097	9744040	PACIFPETROL
126	POZO ANCON 466	518555.116	9742061.02	PACIFPETROL	158	POZO ANCON 496	521368.093	9743523.01	PACIFPETROL
127	POZO ANCON 467	518959.113	9742454.02	PACIFPETROL	159	POZO ANCON 497	521255.094	9743201.01	PACIFPETROL
128	POZO ANCON 468	520158.103	9742792.02	PACIFPETROL	160	POZO ANCON 498	516711.132	9744510	PACIFPETROL
129	POZO ANCON 469	516422.134	9744484	PACIFPETROL	161	POZO ANCON 499	517257.127	9744330	PACIFPETROL
130	POZO ANCON 47	516344.135	9743417.01	PACIFPETROL	162	POZO ANCON 50	516641.132	9742201.02	PACIFPETROL
131	POZO ANCON 470	521758.09	9743725.01	PACIFPETROL	163	POZO ANCON 500	520240.102	9741890.02	PACIFPETROL
132	POZO ANCON 471	521307.093	9743816.01	PACIFPETROL	164	POZO ANCON 501	519482.109	9743491.01	PACIFPETROL
133	POZO ANCON 472	521590.091	9743725.01	PACIFPETROL	165	POZO ANCON 503	519791.106	9742341.02	PACIFPETROL
134	POZO ANCON 473	521139.095	9743782.01	PACIFPETROL	166	POZO ANCON 506	519660.107	9743636.01	PACIFPETROL
135	POZO ANCON 474	521474.092	9743853.01	PACIFPETROL	167	POZO ANCON 508	519210.111	9744099	PACIFPETROL
136	POZO ANCON 475	521411.093	9743687.01	PACIFPETROL	168	POZO ANCON 51	516096.137	9742527.02	PACIFPETROL
137	POZO ANCON 476	521340.093	9744080	PACIFPETROL	169	POZO ANCON 510	520454.101	9744553	PACIFPETROL
138	POZO ANCON 477	521194.094	9743944.01	PACIFPETROL	170	POZO ANCON 511	521368.093	9743523.01	PACIFPETROL
139	POZO ANCON 478	520808.097	9743258.01	PACIFPETROL	171	POZO ANCON 512	521158.095	9743686.01	PACIFPETROL
140	POZO ANCON 479	520694.098	9743387.01	PACIFPETROL	172	POZO ANCON 513	521106.095	9743522.01	PACIFPETROL
141	POZO ANCON 48	516755.131	9743135.01	PACIFPETROL	173	POZO ANCON 514	521181.094	9743595.01	PACIFPETROL
142	POZO ANCON 480	520915.097	9743590.01	PACIFPETROL	174	POZO ANCON 515	520990.096	9743650.01	PACIFPETROL
143	POZO ANCON 481	520862.097	9743421.01	PACIFPETROL	175	POZO ANCON 516	521067.095	9743717.01	PACIFPETROL
144	POZO ANCON 482	520976.096	9743292.01	PACIFPETROL	176	POZO ANCON 517	520371.101	9743673.01	PACIFPETROL
145	POZO ANCON 483	521030.096	9743455.01	PACIFPETROL	177	POZO ANCON 518	520821.097	9743616.01	PACIFPETROL
146	POZO ANCON 484	521248.094	9744106	PACIFPETROL	178	POZO ANCON 519	521009.096	9743554.01	PACIFPETROL
147	POZO ANCON 485	521144.095	9743327.01	PACIFPETROL	179	POZO ANCON 52	516709.132	9742953.01	PACIFPETROL
148	POZO ANCON 486	521144.095	9743327.01	PACIFPETROL	180	POZO ANCON 520	521039.096	9743812.01	PACIFPETROL
149	POZO ANCON 487	521090.095	9743165.01	PACIFPETROL	181	POZO ANCON 521	521345.093	9743615.01	PACIFPETROL
150	POZO ANCON 488	520840.097	9743521.01	PACIFPETROL	182	POZO ANCON 522	520949.096	9744219	PACIFPETROL
151	POZO ANCON 489	520969.096	9743748.01	PACIFPETROL	183	POZO ANCON 523	521292.093	9743458.01	PACIFPETROL
152	POZO ANCON 49	516829.131	9743356.01	PACIFPETROL	184	POZO ANCON 524	520337.101	9743414.01	PACIFPETROL
153	POZO ANCON 490	521023.096	9743908.01	PACIFPETROL	185	POZO ANCON 525	521217.094	9743398.01	PACIFPETROL
154	POZO ANCON 491	521078.095	9744074	PACIFPETROL	186	POZO ANCON 526	520835.097	9743973.01	PACIFPETROL
155	POZO ANCON 492	521134.095	9744236	PACIFPETROL	187	POZO ANCON 527	521239.094	9743295.01	PACIFPETROL
156	POZO ANCON 493	520966.096	9744203	PACIFPETROL	188	POZO ANCON 528	520780.098	9743810.01	PACIFPETROL

N°	Pozo	Coordenadas X	Coordenadas Y	Empresa de operación	•	N°	Pozo	Coordenadas X	Coordenadas Y	Empresa de operación
189	POZO ANCON 529	520801.098	9743713.01	PACIFPETROL	•	221	POZO ANCON 561	521153.095	9744138	PACIFPETROL
190	POZO ANCON 53	516267.135	9742407.02	PACIFPETROL		222	POZO ANCON 562	521122.095	9743429.01	PACIFPETROL
191	POZO ANCON 530	521978.088	9743960.01	PACIFPETROL		223	POZO ANCON 563	521049.095	9743360.01	PACIFPETROL
192	POZO ANCON 531	520895.097	9743683.01	PACIFPETROL		224	POZO ANCON 564	521327.093	9743719.01	PACIFPETROL
193	POZO ANCON 532	520728.098	9743647.01	PACIFPETROL		225	POZO ANCON 565	521401.093	9743785.01	PACIFPETROL
194	POZO ANCON 533	520509.1	9743090.01	PACIFPETROL		226	POZO ANCON 566	521383.093	9743885.01	PACIFPETROL
195	POZO ANCON 534	521276.094	9743558.01	PACIFPETROL		227	POZO ANCON 567	521214.094	9743846.01	PACIFPETROL
196	POZO ANCON 535	520855.097	9743876.01	PACIFPETROL		228	POZO ANCON 568	521265.094	9744014	PACIFPETROL
197	POZO ANCON 536	521441.092	9743588.01	PACIFPETROL		229	POZO ANCON 569	521354.093	9743987.01	PACIFPETROL
198	POZO ANCON 537	520948.096	9743846.01	PACIFPETROL		230	POZO ANCON 57	516355.135	9742571.02	PACIFPETROL
199	POZO ANCON 538	520707.098	9743743.01	PACIFPETROL		231	POZO ANCON 570	521495.092	9743755.01	PACIFPETROL
200	POZO ANCON 539	521405.092	9743330.01	PACIFPETROL		232	POZO ANCON 571	520768.098	9743453.01	PACIFPETROL
201	POZO ANCON 54	516660.132	9742744.02	PACIFPETROL		233	POZO ANCON 572	521009.096	9743208.01	PACIFPETROL
202	POZO ANCON 540	521099.095	9743975.01	PACIFPETROL		234	POZO ANCON 573	520899.097	9743240.01	PACIFPETROL
203	POZO ANCON 541	520872.097	9743780.01	PACIFPETROL		235	POZO ANCON 574	520760.098	9743908.01	PACIFPETROL
204	POZO ANCON 542	521118.095	9743879.01	PACIFPETROL		236	POZO ANCON 575	520717.098	9743303.01	PACIFPETROL
205	POZO ANCON 543	521172.095	9744042	PACIFPETROL		237	POZO ANCON 576	520714.098	9743290.01	PACIFPETROL
206	POZO ANCON 544	521230.094	9743755.01	PACIFPETROL		238	POZO ANCON 577	521024.096	9742662.02	PACIFPETROL
207	POZO ANCON 545	521537.091	9743560.01	PACIFPETROL		239	POZO ANCON 578	520915.097	9742798.02	PACIFPETROL
208	POZO ANCON 546	520955.096	9743391.01	PACIFPETROL		240	POZO ANCON 579	520860.097	9742631.02	PACIFPETROL
209	POZO ANCON 547	520737.098	9743554.01	PACIFPETROL		241	POZO ANCON 58	517358.127	9745433.99	PACIFPETROL
210	POZO ANCON 548	520928.097	9743943.01	PACIFPETROL		242	POZO ANCON 582	519853.106	9743518.01	PACIFPETROL
211	POZO ANCON 549	520881.097	9743325.01	PACIFPETROL		243	POZO ANCON 583	520891.097	9744894	PACIFPETROL
212	POZO ANCON 55	516483.134	9742888.02	PACIFPETROL		244	POZO ANCON 585	520066.104	9743461.01	PACIFPETROL
213	POZO ANCON 550	518113.12	9740981.03	PACIFPETROL		245	POZO ANCON 586	520922.097	9743479.01	PACIFPETROL
214	POZO ANCON 553	518891.114	9743370.01	PACIFPETROL		246	POZO ANCON 587	515236.144	9743864.01	PACIFPETROL
215	POZO ANCON 555	521462.092	9743492.01	PACIFPETROL		247	POZO ANCON 589	518745.115	9744738	PACIFPETROL
216	POZO ANCON 556	518701.115	9743227.01	PACIFPETROL		248	POZO ANCON 59	515147.145	9743145.01	PACIFPETROL
217	POZO ANCON 557	520437.101	9743764.01	PACIFPETROL		249	POZO ANCON 590	520749.098	9742763.02	PACIFPETROL
218	POZO ANCON 55A	517695.124	9742942.01	PACIFPETROL		250	POZO ANCON 591	520838.097	9742738.02	PACIFPETROL
219	POZO ANCON 56	517763.123	9743029.01	PACIFPETROL		251	POZO ANCON 592	520955.096	9742597.02	PACIFPETROL
220	POZO ANCON 560	521385.093	9743429.01	PACIFPETROL	_	252	POZO ANCON 594	520793.097	9742574.02	PACIFPETROL

N°	Pozo	Coordenadas X	Coordenadas Y	Empresa de operación	N°	Pozo	Coordenadas X	Coordenadas Y	Empresa de operación
253	POZO ANCON 595	521002.096	9742770.02	PACIFPETROL	285	POZO ANCON 634	517342.127	9744756	PACIFPETROL
254	POZO ANCON 596	520607.1	9745243.99	PACIFPETROL	286	POZO ANCON 635	520923.097	9744395	PACIFPETROL
255	POZO ANCON 597	520983.096	9742506.02	PACIFPETROL	287	POZO ANCON 636	520881.097	9744595	PACIFPETROL
256	POZO ANCON 598	521070.095	9742472.02	PACIFPETROL	288	POZO ANCON 637	517291.127	9744592	PACIFPETROL
257	POZO ANCON 599	517129.129	9744553	PACIFPETROL	289	POZO ANCON 638	516819.131	9744286	PACIFPETROL
258	POZO ANCON 60	517767.123	9742865.02	PACIFPETROL	290	POZO ANCON 639	517364.127	9744660	PACIFPETROL
259	POZO ANCON 61	517686.124	9742838.02	PACIFPETROL	291	POZO ANCON 64	517578.124	9741721.03	PACIFPETROL
260	POZO ANCON 610	517031.129	9744584	PACIFPETROL	292	POZO ANCON 640	517436.126	9744729	PACIFPETROL
261	POZO ANCON 611	516954.13	9744514	PACIFPETROL	293	POZO ANCON 641	516829.131	9744739	PACIFPETROL
262	POZO ANCON 612	517032.129	9744484	PACIFPETROL	294	POZO ANCON 642	516858.131	9744554	PACIFPETROL
263	POZO ANCON 613	517099.129	9744654	PACIFPETROL	295	POZO ANCON 643	517332.127	9744398	PACIFPETROL
264	POZO ANCON 614	516973.13	9744419	PACIFPETROL	296	POZO ANCON 644	517427.126	9744368	PACIFPETROL
265	POZO ANCON 615	516938.13	9744617	PACIFPETROL	297	POZO ANCON 645	517098.129	9742526.02	PACIFPETROL
266	POZO ANCON 616	517143.128	9744458	PACIFPETROL	298	POZO ANCON 646	516674.132	9744146	PACIFPETROL
267	POZO ANCON 617	517233.128	9744518	PACIFPETROL	299	POZO ANCON 647	516588.133	9744182	PACIFPETROL
268	POZO ANCON 618	517236.128	9744428	PACIFPETROL	300	POZO ANCON 648	516926.13	9744711	PACIFPETROL
269	POZO ANCON 619	517164.128	9744375	PACIFPETROL	301	POZO ANCON 649	517792.123	9743532.01	PACIFPETROL
270	POZO ANCON 61A	517650.124	9742738.02	PACIFPETROL	302	POZO ANCON 65	516366.135	9742284.02	PACIFPETROL
271	POZO ANCON 62	517650.124	9742738.02	PACIFPETROL	303	POZO ANCON 650	521088.095	9744435	PACIFPETROL
272	POZO ANCON 620	516883.131	9744450	PACIFPETROL	304	POZO ANCON 651	520681.099	9743472.01	PACIFPETROL
273	POZO ANCON 621	517229.128	9744069.01	PACIFPETROL	305	POZO ANCON 652	522352.085	9744303	PACIFPETROL
274	POZO ANCON 624	520904.097	9744491	PACIFPETROL	306	POZO ANCON 654	517415.126	9744825	PACIFPETROL
275	POZO ANCON 625	520850.097	9744330	PACIFPETROL	307	POZO ANCON 655	519509.108	9743278.01	PACIFPETROL
276	POZO ANCON 626	521017.096	9744367	PACIFPETROL	308	POZO ANCON 656	519291.11	9743418.01	PACIFPETROL
277	POZO ANCON 627	516730.132	9744317	PACIFPETROL	309	POZO ANCON 66	516679.132	9742385.02	PACIFPETROL
278	POZO ANCON 628	516819.131	9744286	PACIFPETROL	310	POZO ANCON 667	518798.115	9744306	PACIFPETROL
279	POZO ANCON 629	516666.132	9744248	PACIFPETROL	311	POZO ANCON 668	521044.096	9744717	PACIFPETROL
280	POZO ANCON 63	516226.136	9743558.01	PACIFPETROL	312	POZO ANCON 669	520910.097	9742883.01	PACIFPETROL
281	POZO ANCON 630	520807.098	9744522	PACIFPETROL	313	POZO ANCON 67	516799.131	9742229.02	PACIFPETROL
282	POZO ANCON 631	521296.094	9743903.01	PACIFPETROL	314	POZO ANCON 671	520980.096	9744558	PACIFPETROL
283	POZO ANCON 632	517196.128	9744618	PACIFPETROL	315	POZO ANCON 672	521067.096	9744534	PACIFPETROL
284	POZO ANCON 633	517271.127	9744687	PACIFPETROL	316	POZO ANCON 674	516809.131	9744837	PACIFPETROL

N°	Pozo	Coordenadas X	Coordenadas Y	Empresa de operación	•	N°	Pozo	Coordenadas X	Coordenadas Y	Empresa de operación
317	POZO ANCON 675	516730.132	9744768	PACIFPETROL	•	349	POZO ANCON 713	516887.13	9743998.01	PACIFPETROL
318	POZO ANCON 678	516658.133	9744706	PACIFPETROL		350	POZO ANCON 714	514997.146	9743863.01	PACIFPETROL
319	POZO ANCON 679	516903.13	9744807	PACIFPETROL		351	POZO ANCON 715	516847.131	9744188	PACIFPETROL
320	POZO ANCON 68	516525.133	9742048.02	PACIFPETROL		352	POZO ANCON 716	516922.13	9744255	PACIFPETROL
321	POZO ANCON 680	516774.132	9744575	PACIFPETROL		353	POZO ANCON 717	516922.13	9744353	PACIFPETROL
322	POZO ANCON 681	516786.131	9744481	PACIFPETROL		354	POZO ANCON 718	516774.131	9744120	PACIFPETROL
323	POZO ANCON 682	517170.128	9744722	PACIFPETROL		355	POZO ANCON 719	517402.126	9744468	PACIFPETROL
324	POZO ANCON 683	517248.128	9744785	PACIFPETROL		356	POZO ANCON 72	517595.124	9742803.02	PACIFPETROL
325	POZO ANCON 684	516639.133	9744801	PACIFPETROL		357	POZO ANCON 721	517552.125	9743788.01	PACIFPETROL
326	POZO ANCON 685	516713.132	9744427	PACIFPETROL		358	POZO ANCON 722	517301.127	9744136	PACIFPETROL
327	POZO ANCON 686	516682.132	9744601	PACIFPETROL		359	POZO ANCON 723	517702.124	9743908.01	PACIFPETROL
328	POZO ANCON 687	517153.128	9744817	PACIFPETROL		360	POZO ANCON 724	517223.128	9744174	PACIFPETROL
329	POZO ANCON 688	517317.127	9744846	PACIFPETROL		361	POZO ANCON 725	517657.124	9744113	PACIFPETROL
330	POZO ANCON 689	516976.13	9744873	PACIFPETROL		362	POZO ANCON 726	517290.127	9743768.01	PACIFPETROL
331	POZO ANCON 69	517552.125	9742902.02	PACIFPETROL		363	POZO ANCON 727	517484.125	9743718.01	PACIFPETROL
332	POZO ANCON 690	520760.098	9744731	PACIFPETROL		364	POZO ANCON 728	517389.126	9743748.01	PACIFPETROL
333	POZO ANCON 691	520713.099	9744556	PACIFPETROL		365	POZO ANCON 729	517576.125	9743688.01	PACIFPETROL
334	POZO ANCON 693	516708.132	9744866	PACIFPETROL		366	POZO ANCON 73	516052.137	9742279.02	PACIFPETROL
335	POZO ANCON 694	516783.132	9744933	PACIFPETROL		367	POZO ANCON 730	517512.125	9743980.01	PACIFPETROL
336	POZO ANCON 695	516879.131	9744903	PACIFPETROL		368	POZO ANCON 731	517312.127	9744498	PACIFPETROL
337	POZO ANCON 697	516871.131	9744092.01	PACIFPETROL		369	POZO ANCON 732	517536.125	9743885.01	PACIFPETROL
338	POZO ANCON 698	516944.13	9744159	PACIFPETROL		370	POZO ANCON 733	517463.126	9743816.01	PACIFPETROL
339	POZO ANCON 699	517019.129	9744223	PACIFPETROL		371	POZO ANCON 734	517372.126	9743846.01	PACIFPETROL
340	POZO ANCON 70	516423.134	9743067.01	PACIFPETROL		372	POZO ANCON 735	517350.127	9743940.01	PACIFPETROL
341	POZO ANCON 701	520760.098	9744731	PACIFPETROL		373	POZO ANCON 736	517418.126	9744011.01	PACIFPETROL
342	POZO ANCON 704	517066.129	9744842	PACIFPETROL		374	POZO ANCON 737	517252.127	9743974.01	PACIFPETROL
343	POZO ANCON 707	520787.098	9743356.01	PACIFPETROL		375	POZO ANCON 738	517324.127	9744040.01	PACIFPETROL
344	POZO ANCON 709	515155.145	9744058.01	PACIFPETROL		376	POZO ANCON 739	517229.128	9744069.01	PACIFPETROL
345	POZO ANCON 71	517595.124	9742803.02	PACIFPETROL		377	POZO ANCON 74	515827.139	9742864.02	PACIFPETROL
346	POZO ANCON 710	517110.129	9744196	PACIFPETROL		378	POZO ANCON 740	517400.126	9743293.01	PACIFPETROL
347	POZO ANCON 711	517037.129	9744128	PACIFPETROL		379	POZO ANCON 741	517497.125	9743262.01	PACIFPETROL
348	POZO ANCON 712	516962.13	9744063.01	PACIFPETROL		380	POZO ANCON 743	520876.097	9744695	PACIFPETROL

N°	Pozo	Coordenadas X	Coordenadas Y	Empresa de operación	N°	Pozo	Coordenadas X	Coordenadas Y	Empresa de operación
381	POZO ANCON 744	518728.115	9746367.99	PACIFPETROL	413	POZO ANCON 778	519330.11	9742963.01	PACIFPETROL
382	POZO ANCON 745	517158.128	9744000.01	PACIFPETROL	414	POZO ANCON 78	517607.124	9743003.01	PACIFPETROL
383	POZO ANCON 746	517270.127	9743878.01	PACIFPETROL	415	POZO ANCON 784	518108.12	9741502.03	PACIFPETROL
384	POZO ANCON 747	517395.126	9744111	PACIFPETROL	416	POZO ANCON 79	516696.132	9741997.02	PACIFPETROL
385	POZO ANCON 748	517493.125	9744090.01	PACIFPETROL	417	POZO ANCON 790	521464.092	9741414.03	PACIFPETROL
386	POZO ANCON 749	517588.125	9744048.01	PACIFPETROL	418	POZO ANCON 791	520662.099	9743679.01	PACIFPETROL
387	POZO ANCON 75	516589.133	9743070.01	PACIFPETROL	419	POZO ANCON 792	520232.102	9742173.02	PACIFPETROL
388	POZO ANCON 750	517177.128	9743901.01	PACIFPETROL	420	POZO ANCON 797	520099.104	9746342.99	PACIFPETROL
389	POZO ANCON 751	516524.133	9743656.01	PACIFPETROL	421	POZO ANCON 799	515452.142	9743708.01	PACIFPETROL
390	POZO ANCON 752	516669.132	9743797.01	PACIFPETROL	422	POZO ANCON 80	516475.134	9743248.01	PACIFPETROL
391	POZO ANCON 753	516785.131	9743665.01	PACIFPETROL	423	POZO ANCON 81	517842.122	9742735.02	PACIFPETROL
392	POZO ANCON 754	516754.132	9743762.01	PACIFPETROL	424	POZO ANCON 82	516315.135	9742822.02	PACIFPETROL
393	POZO ANCON 755	516812.131	9743933.01	PACIFPETROL	425	POZO ANCON 83	517734.123	9742453.02	PACIFPETROL
394	POZO ANCON 756	516812.131	9743933.01	PACIFPETROL	426	POZO ANCON 84	516891.13	9742035.02	PACIFPETROL
395	POZO ANCON 757	516722.132	9743945.01	PACIFPETROL	427	POZO ANCON 86	518148.12	9742323.02	PACIFPETROL
396	POZO ANCON 758	516627.133	9743985.01	PACIFPETROL	428	POZO ANCON 87	516903.13	9741876.02	PACIFPETROL
397	POZO ANCON 759	516639.133	9743896.01	PACIFPETROL	429	POZO ANCON 88	516059.137	9742646.02	PACIFPETROL
398	POZO ANCON 76	516006.138	9743635.01	PACIFPETROL	430	POZO ANCON 89	517237.127	9742977.01	PACIFPETROL
399	POZO ANCON 760	516544.133	9743924.01	PACIFPETROL	431	POZO ANCON 90	517003.129	9742299.02	PACIFPETROL
400	POZO ANCON 761	516572.133	9743820.01	PACIFPETROL	432	POZO ANCON 91	517080.129	9741793.02	PACIFPETROL
401	POZO ANCON 762	516687.132	9743695.01	PACIFPETROL	433	POZO ANCON 92	517760.123	9742728.02	PACIFPETROL
402	POZO ANCON 763	517204.128	9742847.02	PACIFPETROL	434	POZO ANCON 93	515757.14	9742418.02	PACIFPETROL
403	POZO ANCON 765	517628.124	9743855.01	PACIFPETROL	435	POZO ANCON 94	516146.136	9742135.02	PACIFPETROL
404	POZO ANCON 766	516477.134	9743853.01	PACIFPETROL	436	POZO ANCON 95	517323.127	9742171.02	PACIFPETROL
405	POZO ANCON 767	516477.134	9743853.01	PACIFPETROL	437	POZO ANCON 96	517388.126	9742995.01	PACIFPETROL
406	POZO ANCON 768	516457.134	9743950.01	PACIFPETROL	438	POZO ANCON 969	520664.098	9740413.04	PACIFPETROL
407	POZO ANCON 769	517607.124	9743951.01	PACIFPETROL	439	POZO ANCON 97	517401.126	9742834.02	PACIFPETROL
408	POZO ANCON 77	515809.139	9743397.01	PACIFPETROL	440	POZO ANCON 98	517345.126	9742753.02	PACIFPETROL
409	POZO ANCON 771	514840.148	9743407.01	PACIFPETROL	441	POZO ANCON 99	517302.127	9742842.02	PACIFPETROL
410	POZO ANCON 774	516567.133	9744278	PACIFPETROL	442	POZO ANCON C20	519466.109	9743549.01	PACIFPETROL
411	POZO ANCON 776	514797.148	9743689.01	PACIFPETROL	443	POZO ANCON F01	521193.094	9744157	PACIFPETROL
412	POZO ANCON 777	521076.095	9743269.01	PACIFPETROL	444	POZO ANCON F02	518826.115	9747243.98	PACIFPETROL

N°	Pozo	Coordenadas X	Coordenadas Y	Empresa de operación
445	POZO ANCON F10	518614.116	9745537.99	PACIFPETROL
446	POZO ANCON FA02	518762.115	9743557.01	PACIFPETROL
447	POZO ANCON FA03	519756.106	9740871.03	PACIFPETROL
448	POZO ANCON FA04	515135.145	9743469.01	PACIFPETROL
449	POZO ANCON FA05	515305.144	9744347	PACIFPETROL
450	POZO ANCON FA13	519962.105	9743905.01	PACIFPETROL
451	POZO ANCON FA14	519999.104	9744179	PACIFPETROL
452	POZO ANCON FA16	519330.11	9743718.01	PACIFPETROL
453	POZO ANCON FA17	519629.107	9741163.03	PACIFPETROL
454	POZO ANCON FA20	519220.111	9742310.02	PACIFPETROL
455	POZO ANCON FA21	516590.133	9743336.01	PACIFPETROL
456	POZO ANCON FA22	518900.113	9743183.01	PACIFPETROL
457	POZO ANCON FA28	521624.091	9742726.02	PACIFPETROL
458	POZO ASC 01	520762.099	9748577.97	PACIFPETROL
459	POZO CARMELA 07	519085.112	9742694.02	PACIFPETROL
460	POZO CARMELA 09	515854.14	9749017.96	PACIFPETROL
461	POZO CARMELA 10	516087.138	9748997.96	PACIFPETROL
462	POZO CARMELA 10A	516080.138	9748997.96	PACIFPETROL
463	POZO CARMELA 13	516292.136	9748977.96	PACIFPETROL
464	POZO CARMELA 14	516080.138	9748772.97	PACIFPETROL
465	POZO CARMELA 17	516317.136	9749172.96	PACIFPETROL
466	POZO CARMELA 18	516067.138	9749200.96	PACIFPETROL
467	POZO CARMELA 32S	516340.136	9749175.96	PACIFPETROL
468	POZO CARMELA 34S	516067.138	9748747.97	PACIFPETROL
469	POZO CARMELA 38	516491.135	9748870.96	PACIFPETROL
470	POZO CARMELA 40	516367.136	9748672.97	PACIFPETROL
471	POZO CARMELA 42	516491.135	9748870.96	PACIFPETROL
472	POZO DD 01	516630.132	9741797.02	PACIFPETROL
473	POZO DD 02	514606.149	9743052.01	PACIFPETROL
474	POZO DD 03	518742.114	9740123.04	PACIFPETROL

N°	Pozo	Coordenadas X	Coordenadas Y	Empresa de operación
475	POZO DD 04	518612.115	9740168.04	PACIFPETROL
476	POZO FLO 01	524011.07	9742519.02	PACIFPETROL
477	POZO JAPONESA 01	516423.135	9748497.97	PACIFPETROL
478	POZO MANANTIAL 06	518451.117	9742748.02	PACIFPETROL
479	POZO MATILDE 02	515930.139	9748001.97	PACIFPETROL
480	POZO MATILDE 03	515687.141	9748902.96	PACIFPETROL
481	POZO MATILDE 04	515862.14	9748777.97	PACIFPETROL
482	POZO TAMBO 02	516477.134	9746816.98	PACIFPETROL
483	POZO TAMBO 04	516268.136	9746765.98	PACIFPETROL
484	POZO TAMBO 05	516414.135	9748027.97	PACIFPETROL
485	POZO TAMBO 06	516040.138	9747013.98	PACIFPETROL
486	POZO TAMBO 07	515890.139	9747014.98	PACIFPETROL
487	POZO TAMBO 08	516156.137	9746837.98	PACIFPETROL
488	POZO TIGRE 02S	519582.108	9745385.99	PACIFPETROL
489	POZO TIGRE 26	520130.104	9745375.99	PACIFPETROL
490	POZO TIGRE 26S	520130.104	9745375.99	PACIFPETROL
491	POZO TIGRE 29S	521854.089	9742770.02	PACIFPETROL
492	POZO TIGRE 31	520202.103	9746085.99	PACIFPETROL
493	POZO TIGRE 31S	520127.104	9746143.99	PACIFPETROL
494	POZO TIGRE 34S	521008.096	9743861.01	PACIFPETROL
495	POZO TIGRE 35S	520235.103	9746202.99	PACIFPETROL
496	POZO TIGRE 41	520469.101	9745427.99	PACIFPETROL
497	POZO TIGRE 46S	520067.104	9746446.98	PACIFPETROL
498	POZO TIGRE 49S	519808.106	9746402.99	PACIFPETROL
499	POZO TIGRE 52S	520044.104	9745917.99	PACIFPETROL
500	POZO TIGRE 53	519869.106	9745695.99	PACIFPETROL
501	POZO TIGRE 53S	519869.106	9745696.99	PACIFPETROL
502	POZO TIGRE 60S	519629.108	9745737.99	PACIFPETROL

Elaborado por: La Autora, 2024